NOVA: A Microhypervisor-Based Secure Virtualization Architecture

Udo Steinberg, Bernhard Kauer
Motivation

- Virtualization widely used for consolidation of workloads
- Attackers have begun targeting the virtualization layer
 - Xen VM escape\(^1\)
 - VMware VM escape\(^2\)
- Alarming prediction
 - "60% of virtual servers will be less secure than the physical servers they replace through 2012"\(^3\)

\(^1\) Rutkowska/Wojtczuk: Xen Owning Trilogy, Blackhat 2008
\(^2\) Kortchinsky: Cloudburst - Hacking 3D and Breaking out of VMware, Blackhat 2009
\(^3\) Gartner Inc., Press Release March 15 2010
Security Risks in Virtual Environments

- New layer of software underneath hosted workloads
 - can contain exploitable vulnerabilities
 - must be configured and maintained

- Breaking into the hypervisor
 - compromises all hosted workloads at once
 - facilitates attacks from below the guest OS kernel

- Consolidation of workloads with different trust levels
 - requires strong separation
State of the Art: Monolithic Hypervisors

Monolithic hypervisor is single point of failure

> 100,000 lines of code

x86 Virtualization

Device Drivers

Management

Storage

Network

host mode

guest mode

Udo Steinberg

NOVA
Size of the Virtualization Layer

- **Xen**
 - Hypervisor
 - Dom0 Paravirt.
 - QEMU VMM

- **KVM**
 - Hypervisor
 - Linux
 - QEMU VMM

- **ESXi**
 - Hypervisor

- **Hyper-V**
 - Hypervisor

NOVA

- **Windows 2008 Server**

<table>
<thead>
<tr>
<th>Hypervisor</th>
<th>Lines of Source Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xen</td>
<td>100,000-200,000</td>
</tr>
<tr>
<td>KVM</td>
<td>200,000-300,000</td>
</tr>
<tr>
<td>ESXi</td>
<td>300,000-400,000</td>
</tr>
<tr>
<td>Hyper-V</td>
<td>400,000-500,000</td>
</tr>
<tr>
<td>NOVA</td>
<td>500,000-600,000</td>
</tr>
</tbody>
</table>
Improving the Status Quo

Virtualization layer is critical. Make it as small as possible.

Design Principles:

1) Fine-grained functional decomposition
 - Microhypervisor (privileged)
 - Multiple user-level VMMs (unprivileged)
 - User-level drivers, applications (unprivileged)

2) Principle of least privilege among all components
 - Capability-based authorization model

Ideas adopted from the microkernel world
NOVA OS Virtualization Architecture

- **guest mode**
 - VM
 - VMM
 - Applications
 - Partition Manager
 - Device Drivers
 - User
 - Kernel

- **host mode**
 - VM
 - VMM
 - Microhypervisor

LOC:
- 9,000 LOC
- 20,000 LOC
- 7,000 LOC
- 9,000 LOC
Microhypervisor implements 5 types of objects:

- Protection Domain
- Execution Context
- Scheduling Context
- Portal
- Semaphore

Hypercall interface uses capabilities for all operations.
Handling of Virtualization Events

- User-level VMM implements complex x86 interface
- Transfer of guest state between VM and VMM via synchronous message passing
Interrupt Delivery

- Interrupt fan-out to multiple components via semaphores
- Recall of virtual CPUs to inject interrupt vectors
Impact of Attacks in NOVA

Attack from Guest OS
- Hypervisor attack surface is message-passing interface
- VM can compromise or crash its associated VMM
Virtualization Interface: Lessons Learned

- One simple communication mechanism
 - Fast synchronous IPC with hand-off scheduling
 - Selective transfer of execution state
 - HV need not care about x86 virtualization details

- One synchronization mechanism
 - Counting semaphores
 - Also used for interrupt delivery

- Unified abstractions
 - Protection Domain = Virtual machine or User Task
 - Execution Context = Virtual CPU or Thread
Virtualization Overhead

Kernel-Compile Benchmark:
- CPU: Intel Core i7 2.67 GHz

VM Configuration:
- Single virtual CPU, virtual disk
- 512 MB Guest Memory, EPT+VPID

Direct Assignment:
- 0.55% performance overhead caused by nested paging

NOVA:
- Additional 0.3% overhead
- ~3900 cycles/exit
I/O Virtualization Overhead (AHCI controller)

Stream of sequential disk reads with increasing block sizes
I/O Virtualization Overhead (e1000 NIC)

- **CPU Utilization (%)** [log]
- **Bandwidth (Mbit/s) [log]**

Graph:
- Direct
- Native

Title: Receive UDP packet stream with increasing bandwidth
Current Status

- **Hypervisor**
 - Runs on Intel VT-x and AMD-V
 - Supports SMP, Nested Paging, VT-d IOMMU

- **User-Level Virtual-Machine Monitor**
 - Implements virtual PCI, SATA, NIC, BIOS, ...
 - Supports PCI Pass-Through (direct assignment)

- **Ongoing work**
 - Windows as Guest OS
 - SR-IOV Devices
Conclusion

- Decomposed virtualization layer provides additional isolation boundaries at the cost of more context switches

- Lower context-switch overhead resulting from simple code paths and selective state transfer

NOVA achievements:
- **TCB reduction by an order of magnitude**
- **Performance improvement over monolithic hypervisors**

Code available under GPLv2: http://www.hypervisor.org