
Department of Computer Science – Institute for Systems Architecture – Operating Systems Group

NOVA:
A Microhypervisor-Based Secure
Virtualization Architecture

Udo Steinberg, Bernhard Kauer

Motivation

Udo Steinberg NOVA 2

• Virtualization widely used for consolidation of workloads

• Attackers have begun targeting the virtualization layer
• Xen VM escape1

• VMware VM escape2

• Alarming prediction
• „60% of virtual servers will be less secure than the physical

servers they replace through 2012“3

1 Rutkowska/Wojtczuk: Xen 0wning Trilogy, Blackhat 2008
2 Kortchinsky: Cloudburst - Hacking 3D and Breaking out of VMware, Blackhat 2009
3 Gartner Inc., Press Release March 15 2010

Security Risks in Virtual Environments

Udo Steinberg NOVA 3

• New layer of software underneath hosted workloads
• can contain exploitable vulnerabilities
• must be configured and maintained

• Breaking into the hypervisor
• compromises all hosted workloads at once
• facilitates attacks from below the guest OS kernel

• Consolidation of workloads with different trust levels
• requires strong separation

State of the Art: Monolithic Hypervisors

Udo Steinberg NOVA 4

Monolithic hypervisor is single point of failure

guest mode

host mode

Monolithic Hypervisor

x86 Virtualization

VM VM VM

Device Drivers

ManagementStorage

Network
> 100,000 lines of code

Size of the Virtualization Layer

Udo Steinberg NOVA 5

Hypervisor

Linux

Dom0
Paravirt.

QEMU
VMM

Hypervisor

Hypervisor

NOVAXen KVM ESXi Hyper-V

100,000

200,000

300,000

400,000

500,000

0

Windows
2008

Server

QEMU
VMM

Li
ne

s
of

 S
ou

rc
e

C
od

e

Improving the Status Quo

Udo Steinberg NOVA 6

Virtualization layer is critical. Make it as small as possible.

Design Principles:
1)Fine-grained functional decomposition

 Microhypervisor (privileged)
 Multiple user-level VMMs (unprivileged)
 User-level drivers, applications (unprivileged)

2)Principle of least privilege among all components
 Capability-based authorization model

Ideas adopted from the microkernel world

NOVA OS Virtualization Architecture

Udo Steinberg NOVA 7

guest mode

host mode
Microhypervisor

Partition Manager

VMM

Applications Device Drivers
User

Kernel

VM

VMM VMM

VM VM

9,000 LOC

20,000 LOC

7,000 LOC

Capability
Selector

Microhypervisor implements 5 types of objects:

• Protection Domain
• Execution Context
• Scheduling Context
• Portal
• Semaphore

Hypercall interface uses capabilities for all operations.

Hypervisor Objects Per-PD Capability Space

Microhypervisor Abstractions

Udo Steinberg NOVA 8

3

Capability

SCECPD

Capability

Capability

Handling of Virtualization Events

Udo Steinberg NOVA 9

• User-level VMM implements
complex x86 interface

• Transfer of guest state between
VM and VMM via synchronous
message passing

guest mode

host mode

User

Kernel

Microhypervisor

VM

VMM Disk Driver

x86 Block

I/O Instr.
VM Exit

Call

VM Resume

Reply

Interrupt Delivery

Udo Steinberg NOVA 10

• Interrupt fan-out to multiple
components via semaphores

• Recall of virtual CPUs to inject
interrupt vectors

guest mode

host mode

User

Kernel

Microhypervisor

VM

VMM Disk Driver
VM ExitVM Resume

Inject Vector SHMEM

Recall

Impact of Attacks in NOVA

Udo Steinberg NOVA 11

Attack from Guest OS
• Hypervisor attack surface is

message-passing interface
• VM can compromise or crash its

associated VMM

guest mode

host mode

User

Kernel

Microhypervisor

VM

VMM Device Driver

x86

Msg Hypercall

Virtualization Interface: Lessons Learned

Udo Steinberg NOVA 12

• One simple communication mechanism
• Fast synchronous IPC with hand-off scheduling
• Selective transfer of execution state
• HV need not care about x86 virtualization details

• One synchronization mechanism
• Counting semaphores
• Also used for interrupt delivery

• Unified abstractions
• Protection Domain = Virtual machine or User Task
• Execution Context = Virtual CPU or Thread

Virtualization Overhead

Udo Steinberg NOVA 13

0.55%

1.91%

2.82% 2.76%

4.26% Kernel-Compile Benchmark:
CPU: Intel Core i7 2.67 GHz

VM Configuration:
Single virtual CPU, virtual disk
512 MB Guest Memory, EPT+VPID

Direct Assignment:
0.55% performance overhead
caused by nested paging

NOVA:
Additional 0.3% overhead
~3900 cycles/exit

0.83%

tvirtual / tnative - 100%

I/O Virtualization Overhead (AHCI controller)

Udo Steinberg NOVA 14

1

2

4

8

16

32

64

C
PU

 U
til

iz
at

io
n

(%
)

[l
og

]

Block Size (Bytes) [log]

Native
Direct
Virtual

Stream of sequential disk reads with increasing block sizes

I/O Virtualization Overhead (e1000 NIC)

Udo Steinberg NOVA 15

1

2

4

8

16

32

64

1 2 4 8 16 31 62 124 251 513 952

C
PU

 U
til

iz
at

io
n

(%
)

[l
og

]

Bandwidth (Mbit/s) [log]

Direct
Native

Receive UDP packet stream with increasing bandwidth

Current Status

Udo Steinberg NOVA 16

• Hypervisor
• Runs on Intel VT-x and AMD-V
• Supports SMP, Nested Paging, VT-d IOMMU

• User-Level Virtual-Machine Monitor
• Implements virtual PCI, SATA, NIC, BIOS, ...
• Supports PCI Pass-Through (direct assignment)

• Ongoing work
• Windows as Guest OS
• SR-IOV Devices

Conclusion

Udo Steinberg NOVA 17

• Decomposed virtualization layer provides additional isolation
boundaries at the cost of more context switches

• Lower context-switch overhead resulting from simple code
paths and selective state transfer

NOVA achievements:
• TCB reduction by an order of magnitude
• Performance improvement over monolithic hypervisors

Code available under GPLv2: http://www.hypervisor.org

