

Department of Computer Science – Institute for Systems Architecture – Operating Systems Group

NOVA: A Microhypervisor-Based Secure Virtualization Architecture

<u>Udo Steinberg</u>, Bernhard Kauer

Motivation

- Virtualization widely used for consolidation of workloads
- Attackers have begun targeting the virtualization layer
 - Xen VM escape¹
 - VMware VM escape²
- Alarming prediction
 - "60% of virtual servers will be less secure than the physical servers they replace through 2012"3

¹ Rutkowska/Wojtczuk: Xen Owning Trilogy, Blackhat 2008

² Kortchinsky: Cloudburst - Hacking 3D and Breaking out of VMware, Blackhat 2009

³ Gartner Inc., Press Release March 15 2010

Security Risks in Virtual Environments

- New layer of software underneath hosted workloads
 - can contain exploitable vulnerabilities
 - must be configured and maintained
- Breaking into the hypervisor
 - compromises all hosted workloads at once
 - facilitates attacks from below the guest OS kernel
- Consolidation of workloads with different trust levels
 - requires strong separation

State of the Art: Monolithic Hypervisors

Monolithic hypervisor is single point of failure

Improving the Status Quo

Virtualization layer is critical. Make it as small as possible.

Design Principles:

- 1) Fine-grained functional decomposition
 - Microhypervisor (privileged)
 - Multiple user-level VMMs (unprivileged)
 - User-level drivers, applications (unprivileged)
- 2) Principle of least privilege among all components
 - Capability-based authorization model

Ideas adopted from the microkernel world

NOVA OS Virtualization Architecture

Microhypervisor Abstractions

Microhypervisor implements 5 types of objects:

- Protection Domain
- Execution Context
- Scheduling Context
- Portal
- Semaphore

Capability Selector

Hypercall interface uses capabilities for all operations.

Handling of Virtualization Events

- User-level VMM implements complex x86 interface
- Transfer of guest state between VM and VMM via synchronous message passing

Interrupt Delivery

- Interrupt fan-out to multiple components via semaphores
- Recall of virtual CPUs to inject interrupt vectors

Impact of Attacks in NOVA

Attack from Guest OS

- Hypervisor attack surface is message-passing interface
- VM can compromise or crash its associated VMM

Virtualization Interface: Lessons Learned

- One simple communication mechanism
 - Fast synchronous IPC with hand-off scheduling
 - Selective transfer of execution state
 - HV need not care about x86 virtualization details
- One synchronization mechanism
 - Counting semaphores
 - Also used for interrupt delivery
- Unified abstractions
 - Protection Domain = Virtual machine or User Task
 - Execution Context = Virtual CPU or Thread

Virtualization Overhead

Kernel-Compile Benchmark:

CPU: Intel Core i7 2.67 GHz

VM Configuration:

Single virtual CPU, virtual disk 512 MB Guest Memory, EPT+VPID

Direct Assignment:

0.55% performance overhead caused by nested paging

NOVA:

Additional 0.3% overhead ~3900 cycles/exit

I/O Virtualization Overhead (AHCI controller)

Stream of sequential disk reads with increasing block sizes

Udo Steinberg NOVA 14

I/O Virtualization Overhead (e1000 NIC)

Receive UDP packet stream with increasing bandwidth

Current Status

- Hypervisor
 - Runs on Intel VT-x and AMD-V
 - Supports SMP, Nested Paging, VT-d IOMMU
- User-Level Virtual-Machine Monitor
 - Implements virtual PCI, SATA, NIC, BIOS, ...
 - Supports PCI Pass-Through (direct assignment)
- Ongoing work
 - Windows as Guest OS
 - SR-IOV Devices

Conclusion

- Decomposed virtualization layer provides additional isolation boundaries at the cost of more context switches
- Lower context-switch overhead resulting from simple code paths and selective state transfer

NOVA achievements:

- TCB reduction by an order of magnitude
- Performance improvement over monolithic hypervisors

Code available under GPLv2: http://www.hypervisor.org