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Motivation
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• Virtualization widely used for consolidation of workloads

• Attackers have begun targeting the virtualization layer
• Xen VM escape1

• VMware VM escape2

• Alarming prediction
• „60% of virtual servers will be less secure than the physical 

servers they replace through 2012“3

1 Rutkowska/Wojtczuk: Xen 0wning Trilogy, Blackhat 2008
2 Kortchinsky: Cloudburst - Hacking 3D and Breaking out of VMware, Blackhat 2009
3 Gartner Inc., Press Release March 15 2010



Security Risks in Virtual Environments
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• New layer of software underneath hosted workloads
• can contain exploitable vulnerabilities
• must be configured and maintained

• Breaking into the hypervisor
• compromises all hosted workloads at once
• facilitates attacks from below the guest OS kernel

• Consolidation of workloads with different trust levels
• requires strong separation



State of the Art: Monolithic Hypervisors
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Monolithic hypervisor is single point of failure

guest mode

host mode

Monolithic Hypervisor

x86 Virtualization

VM VM VM

Device Drivers

ManagementStorage

Network
> 100,000 lines of code



Size of the Virtualization Layer
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Improving the Status Quo
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Virtualization layer is critical. Make it as small as possible.

Design Principles:
1)Fine-grained functional decomposition

 Microhypervisor (privileged)
 Multiple user-level VMMs (unprivileged)
 User-level drivers, applications (unprivileged)

2)Principle of least privilege among all components
 Capability-based authorization model

Ideas adopted from the microkernel world



NOVA OS Virtualization Architecture
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host mode
Microhypervisor
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Capability
Selector

Microhypervisor implements 5 types of objects:

• Protection Domain
• Execution Context
• Scheduling Context
• Portal
• Semaphore

Hypercall interface uses capabilities for all operations.

Hypervisor Objects Per-PD Capability Space

Microhypervisor Abstractions
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Handling of Virtualization Events
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• User-level VMM implements 
complex x86 interface

• Transfer of guest state between 
VM and VMM via synchronous 
message passing

guest mode

host mode
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Interrupt Delivery
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• Interrupt fan-out to multiple 
components via semaphores

• Recall of virtual CPUs to inject 
interrupt vectors
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Impact of Attacks in NOVA
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Attack from Guest OS
• Hypervisor attack surface is 

message-passing interface
• VM can compromise or crash its 

associated VMM
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Virtualization Interface: Lessons Learned
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• One simple communication mechanism
• Fast synchronous IPC with hand-off scheduling
• Selective transfer of execution state 
• HV need not care about x86 virtualization details

• One synchronization mechanism
• Counting semaphores
• Also used for interrupt delivery

• Unified abstractions
• Protection Domain = Virtual machine or User Task
• Execution Context = Virtual CPU or Thread



Virtualization Overhead
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0.55%

1.91%

2.82% 2.76%

4.26% Kernel-Compile Benchmark:
CPU: Intel Core i7 2.67 GHz

VM Configuration:
Single virtual CPU, virtual disk
512 MB Guest Memory, EPT+VPID

Direct Assignment:
0.55% performance overhead 
caused by nested paging

NOVA:
Additional 0.3% overhead
~3900 cycles/exit

0.83%

tvirtual / tnative - 100%



I/O Virtualization Overhead (AHCI controller)
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I/O Virtualization Overhead (e1000 NIC)
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Current Status
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• Hypervisor
• Runs on Intel VT-x and AMD-V
• Supports SMP, Nested Paging, VT-d IOMMU

• User-Level Virtual-Machine Monitor
• Implements virtual PCI, SATA, NIC, BIOS, ...
• Supports PCI Pass-Through (direct assignment)

• Ongoing work
• Windows as Guest OS
• SR-IOV Devices



Conclusion
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• Decomposed virtualization layer provides additional isolation 
boundaries at the cost of more context switches

• Lower context-switch overhead resulting from simple code 
paths and selective state transfer

NOVA achievements:
• TCB reduction by an order of magnitude
• Performance improvement over monolithic hypervisors

Code available under GPLv2:    http://www.hypervisor.org


