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Memory Contention Intel Core2 Quad

Bottleneck: memory bus

Stall cycles, increased runtime
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Impact of Resource Contention on Energy 
Efficiency

Longer time to halt

More static power

Increasing importance of leakage
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Achieving Energy Efficiency by Scheduling

Scheduler decides

When

Where

In which combination

At which frequency setting

to execute tasks.

What ist the most energy-efficient schedule?
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Achieving Energy Efficiency via Co-Scheduling

Combination of tasks running together determines 
performance and energy efficiency

Memory-bound + memory-bound: low energy 
efficiency

Avoid memory bottleneck by combining memory-
bound with compute bound tasks

➔ Co-schedule tasks with different characteristics

energy
efficiency

avoid
contention

mem + comp
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Achieving Energy Efficiency via DVFS

DVFS: Dynamic Voltage and Frequency Scaling

Adapt processor frequency and voltage to task 
characteristics

Memory-bound tasks: low frequency/voltage

Compute-bound tasks: high frequency/voltage

Multicore hardware limits options for frequency/voltage 
selection

Often shared frequency/voltage domains

➔ Co-schedule similar tasks to select common best 
  frequency and voltage

energy
efficiency

use
DVFS

mem + mem
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Outline

Analysis
Resource contention

Shared frequency/voltage domains

Resource-conscious scheduling for energy efficiency
OS task scheduling

VM scheduling

Frequency selection

Evaluation
Reduction of resource contention

Increase in energy efficiency by 10 to 20%
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Analysis of Resource Contention on the Intel 
Core2 Quad Q6600

Contention for shared resources reduces energy efficiency

Shared L2 caches (two cores)

Shared memory interconnect (four cores)
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Resource Contention SPEC CPU 2006

Compute-bound benchmarks
Little resource contention

Memory-bound benchmarks
Severe slowdown caused by memory contention

Huge increase in memory demands since SPEC 2000

Cache contention of comparatively little importance
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Energy Efficiency under DVFS

Comparison of 1.6GHz to 2.4GHz

4 instances of benchmark

Reducing the frequency pays off for memory intensive tasks
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Energy-Efficient Co-Scheduling

Avoiding resource contention
Requires knowledge of task characteristics

Requires coordination of task selection across cores

Merkel and Bellosa, EuroSys 2008
Task characterization

Execution of tasks in a defined order (runqueue sorting)

Used for mitigating thermal effects

Take advantage of runqueue sorting to provide 
coordination with low overhead
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Sorted Co-Scheduling

Group cores in pairs

Sort runqueues by critical resource 
(memory bandwidth)

Coordinate processing of runqueues

Co-schedule tasks with complementary resource 
demands

time

core 1

core 0



Resource-Conscious Scheduling for Energy Efficiency on 
Multicore Processors

31

Sorted Co-Scheduling

Dealing with unequeal runqueue lengths

Example: core 0 executes one task more than core 1
Time needed to process runqueues does not even out

→ increase length of timeslices on core 1

 core 1

 core 0
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Sorted Co-Scheduling

Shift runqueues of additional cores

Avoid running most memory intensive tasks together

core 1

core 0

core 3

core 2
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Resource-Conscious Load Balancing

Sorting requires tasks with different characteristics on 
each core

Migrate task if variance among tasks in runqueue is 
increased

core 0 core 1 core 0 core 1
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Virtual Machine Scheduling

Leverage workload diversity of several physical 
machines

Extend balancing strategy using the concept of 
virtualization

Migrate entire virtual machines

Co-scheduling of virtual machine instances

machine 0 machine 1 machine 0 machine 1

VM a VM b VM c VM d VM a VM bVM cVM d
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Frequency Heuristic

Fall back to frequency scaling if workload does not allow 
avoiding contention

Frequency heuristic takes effect when:

Too many memory-bound tasks/VMs are present

Sorted scheduling has to co-schedule memory-bound 
tasks

Estimate if lower frequency would reduce EDP
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Evaluation

Prototype

Modified Linux 2.6.22 kernel
Runqueue sorting

Resource-conscious load balancing

KVM for virtualization
Schedule KVM instances within a physical machine like 
normal OS tasks

Use KVM migration features to move VMs between 
physical machines
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Conclusion

Cross-effects lead to low energy efficiency in multicores

Resource contention

Shared voltage domains

Analysis: contention avoidance more important than 
common optimal frequency/voltage

Approach: co-scheduling by sorting memory intensity in 
different directions

Resource-conscious load balancing

VM scheduling and migration

Frequency scaling as fallback

Result: reduction of EDP by 10 to 20%
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Energy Efficiency under DVFS

Task specific optimal processor frequency/voltage

Memory-bound task →  low frequency

Compute-bound task →  high frequency

processor
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Resource Contention

Tasks compete for shared chip resources
e.g., caches, memory (CMP)

Impact on
Runtime

Energy efficiency core 0 core 1

memory
interconnect
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New Challenges for OS Scheduling

Scheduler determines task execution
When

Where

What combination

Scheduling decisions have impact on
Energy efficiency

Resource contention

➔ Information about task characteristics is crucial!
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Resource Contention vs. Frequency Selection

Reducing contention has much greater potential for 
increasing energy efficiency than DVFS

➔Schedule tasks in a way that avoids contention, even 
if some tasks have to run at the “wrong” frequency
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New Challenges for OS Scheduling

Task characterization in today's general purpose OS 
schedulers

User-specified priorities

I/O-intensive vs. CPU-intensive

No indicators for energy efficiency, or resource 
contention
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Task Characterization

Task activity vectors
Characterize tasks by their resource utilization

(e.g., functional unit, cache, memory interconnect, ...)

Provide information to smart schedulers

Resource utilization: versatile indicator for
Temperature

Optimal frequency

Contention

Task Activity Vectors: A New Metric for 
Temperature-Aware Scheduling
Andreas Merkel and Frank Bellosa
Third ACM SIGOPS EuroSys Conference, 2008
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Task Activity Vectors

Vector with n components
Each component represents a resource

Component value: utilization of resource while task is 
running

Inferred on-line from performance
monitoring counters

v =v =
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n
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Vector-Based Scheduling for Energy Efficiency

Multiprocessor schedulers make decisions 
independently for each processor

Arbitrary combinations of tasks running together
Disregarding of interference

Disregarding of task-specific optimal frequency

→ Resource contention
→ Prolonged task runtimes
→ Inefficient use of energy
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EDP Estimation

Linear interpolation

f(1): EDP factor of completely memory-bound 
microbenchmark

f(0): EDP factor of completely compute-bound 
microbenchmark

Estimation for EDP factor of task with memory bus 
utilization x:
f(x) = x * f(1) + (1-x) * f(0)

f
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USENIX Security Symposium 2007



New Processor Topologies

 On-chip thread-level parallelism
 simultaneous multithreading (SMT)

chip multiprocessors (CMP)

 shared resources

 shared power management



Old Scheduling Policies

 Schedulers designed for traditional SMP systems

 Independent scheduling decisions for each processor
 combination of tasks running at a time is arbitrary
 is this optimal for SMT/CMP?
 what about resource contention?
 what about power management features like 

frequency scaling?

 Assumption: a set of unrelated, single-treaded 
processes is running
 no communication



Power Management

 Frequency selection
 SMP: independently for each processor
 SMT: affects all logical threads of a processor
 CMP: per-core selection possible at the price of 

hardware complexity, but often only per-chip

 Some tasks run more efficiently at a certain frequency 
than others
 memory-bound tasks: lower frequencies
 compute-bound tasks:higher frequencies



Multiprocessor Architectures

 Classical SMP
 physically different chips
 interference via memory bus (shared bus, cache 

coherency)
 SMT

 multiple logical threads on one chip
 heavy contention for almost all resources

 CMP
 multiple processors on one chip
 interference via memory access logic, memory bus
 sometimes shared caches



Experiments

 Intel Core2 Quad
 resource contention

 L2 cache shared between 2 cores
 memory access infrastructure shared by all 4 cores

 frequency selection
 frequency shared by two cores
 voltage scaling only for entire chip

 Microbenchmarks
 SPEC CPU 2006 benchmarks



Discussion

 Lower frequency is beneficial if all cores execute 
memory-intensive tasks

 But: Overhead in terms of time and energy if all cores 
execute memory intensive tasks

 Do the benefits outweigh the overhead?

No:
Contention causes runtime to increase by up to factor 2 to 4
Frequency scaling reduces energy by factor 0.7 at best
 => avoiding contention central issue for energy efficiency



Example Scenario

 4x hmmer (compute-intensive)
 4x soplex (memory-intensive)



Goals

 Design scheduling policy that is optimal for the new 
architectures

 Use the resource CPU as efficiently as possible in 
terms of
 energy
 time

 Sometimes controversial goals
 compromise: EDP = energy * delay



Goals

 Run tasks in combinations that cause no interference

 Run each task at its optimal frequency
 combination matters, if frequency selection affects 

multiple CPUs

 => we need to be able to determine what tasks run 
simultaneously



Mechanisms

 Task migrations

 Coordination of scheduling decisions (sort of gang 
scheduling)



Result

 Run memory-intensive tasks parallel to compute-
intensive tasks at highest frequency

 Only lower the frequency if nothing but memory-
intensive tasks are available for execution



Sorted Scheduling



Evaluation Sorting (Dual Core)
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Evaluation Frequency Heuristic

time power EDP time power EDP
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 Execution of 4 x hmmer and 4 x lbm
 normalized to 2.4 GHz



Evaluation: discussion
 Improved runtime and EDP by avoiding contention

 Reduction of EDP by reduction of runtime

 Frequency scaling only beneficial if scheduling cannot 
avoid contention
 Reduction of EDP by reduction of power


