
Evaluation of AMD’s Advanced Synchronization Facility
Within a Complete Transactional Memory Stack

Dave Christie
Jae-Woong Chung

Stephan Diestelhorst
Michael Hohmuth

Martin Pohlack
Advanced Micro Devices, Inc.
ASF_Feedback@amd.com

Christof Fetzer
Martin Nowack
Torvald Riegel

Technische Universität Dresden
{firstname.lastname}@

inf.tu-dresden.de

Pascal Felber
Patrick Marlier
Etienne Rivière

Université de Neuchâtel
{firstname.lastname}@unine.ch

Abstract
AMD’s Advanced Synchronization Facility (ASF) is an x86
instruction set extension proposal intended to simplify and
speed up the synchronization of concurrent programs. In
this paper, we report our experiences using ASF for imple-
menting transactional memory. We have extended a C/C++
compiler to support language-level transactions and generate
code that takes advantage of ASF. We use a software fall-
back mechanism for transactions that cannot be committed
within ASF (e. g., because of hardware capacity limitations).
Our evaluation uses a cycle-accurate x86 simulator that we
have extended with ASF support. Building a complete ASF-
based software stack allows us to evaluate the performance
gains that a user-level program can obtain from ASF. Our
measurements on a wide range of benchmarks indicate that
the overheads traditionally associated with software transac-
tional memories can be significantly reduced with the help
of ASF.

Categories and Subject Descriptors C.1.4 [Processor Ar-
chitectures]: Parallel Architectures; D.1.3 [Programming
Techniques]: Concurrent Programming

General Terms Algorithms, Performance

Keywords Transactional Memory

1. Introduction
The number of cores per processor is expected to increase
with each new processor generation. To take advantage of
the processing capabilities of new multicore processors, ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’10, April 13–16, 2010, Paris, France.
Copyright c© 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

plications must be able to harness the power of more and
more cores. Amdahl’s law [3] gives an upper bound on the
application speedup s one can achieve: s = 1

(1−P)+P/N where
P is the proportion of the program that can be made parallel
and N is the number of cores. In other words, one can obtain
a speedup that grows with the number of cores only if the
fraction P can be made sufficiently large.

A promising way to increase the parallel fraction P is
to use speculation. The idea is to execute blocks of code
that could conflict (i. e., read or modify the same data) with
blocks executed by other cores in such a way that (1) con-
flicts are detected dynamically and (2) state changes are only
committed if it is guaranteed that there was no conflict. Spec-
ulation is an optimistic synchronization strategy that is es-
pecially helpful for improving the degree of parallelism in
the following scenarios: first, when there is a good chance
that two code blocks do not conflict because, for example,
they access different memory locations; and second, when
there is no easy way to predict at compile time if and when
two code blocks will conflict, and pessimistic strategies like
fine-grained locking unnecessarily limit scalability.

Transactional memory (TM) [15] is a shared-memory
synchronization mechanism that supports speculation at the
level of individual memory accesses. It allows to group any
number of memory accesses into transactions, which are
executed speculatively and take effect atomically only if
there have been no conflicts with concurrect transactions ex-
ecuted by other threads. In the case of conflicts, transactions
are rolled back and restarted. In programming languages,
one can introduce atomic block constructs that are directly
mapped onto transactions. Atomic blocks are also likely to
be easier to use for programmers than other mechanisms
such as fine-grained locking because they only specify what
is required to be atomic but not how this is implemented.

While there are at least two industry implementations for
hardware support for TM [8, 11], most of the current TM
implementations are software-based [10, 14, 27]. Even the
most efficient software TMs introduce significant overheads.

27

This lead some researchers to claim that software transac-
tional memories (STMs) are only a research toy [7]. Our ob-
jective in this paper is to evaluate if a hardware extension
recently proposed by AMD can help speed up concurrent
applications that use speculation.

AMD’s Advanced Synchronization Facility (ASF) is a
public specification proposal of an instruction set extension
for the AMD64 architecture [2]. It has the objective to reduce
the overheads of speculation and simplify the programming
of concurrent programs. ASF has been designed in such a
way that it can be implemented in modern microprocessors
with reasonable transistor budget and runtime overheads.

In this paper, we try to answer the following question: can
we use ASF to speed up the speculative execution of atomic
blocks? To that end, we implemented the ASF extensions
in a near-cycle-accurate AMD64 simulator using ASF cycle
costs and pipeline interactions that we would expect from
a real hardware implementation. We also extended the soft-
ware stack to work with ASF: we added support for atomic
blocks to an existing open source C/C++ compiler and map
the generated code onto the ASF primitives. If ASF cannot
execute a block (e. g., because of capacity limitations), we
use a software-based fallback solution.

Due to the lack of real applications with atomic blocks,
we use a set of standard TM benchmarks in our evaluation.
We compile these benchmarks with our extended C/C++
compiler into binaries that exploit ASF extensions for spec-
ulation. We show that ASF provides good scalability on sev-
eral of the considered workloads while incurring much lower
overhead than software-only implementations.

In the rest of this paper we continue with a description
of the ASF specification and possible implementations (Sec-
tion 2). Section 3 describes our TM software stack, includ-
ing our TM compiler and our TM runtime for ASF. Sec-
tion 4 presents our ASF simulator. A detailed evaluation of
our hardware and software stack follows in Section 5. We
discuss related work in Section 6 and conclude in Section 7.

2. Advanced Synchronization Facility (ASF)
ASF is an experimental AMD64 architecture extension pro-
posal developed by AMD. Although ASF originally has
been aimed at making lock-free programming significantly
easier and faster, we were interested in applying ASF to
transactional programming, especially to accelerating TM
systems.

2.1 ASF rationale
ASF is purely experimental and has not been announced for
any future product. However, it has been developed in the
framework of constraints that apply to the development of a
high-volume microprocessor. In general, academia has little
insight into how constrained the opportunities to innovate in
this environment are. Thus, we think that one contribution of
ASF is that it helps setting expectations on what can possibly
be anticipated in future products.

Today’s commercial processors are very complex (they
contain billions of transistors) and require a large design
and verification effort. Market pressures impose the need
to be functional and on time. Therefore, these processors
typically cannot serve as a vehicle for experimentation. Be-
fore any complex new feature can be added to a product,
a demonstration of broad benefits is required. Additionally,
new ground-up processor designs are increasingly rare be-
cause they are extremely expensive. Typically, new proces-
sor generations are instead incremental evolutions of older
processor designs.

These constraints had implications on ASF’s design
that resulted in differences from many academic hardware-
extension proposals. We refrain from mandating modifica-
tions to critical components such as the cache-coherence
protocol, and instead allow leveraging existing processor
components as much as possible: caches and store buffers
may be used for data monitoring and versioning, and the
hardware’s contention management piggybacks on the exist-
ing cache-coherence protocol. It follows that cache lines are
the units of protection, and that only very simple contention
management can be implemented in hardware: ASF uses a
straightforward requester-wins scheme, which always aborts
the transaction already containing the conflicting element in
its working set. Without changes to the cache-coherence
protocol, the cores retain their existing system interface.
This makes ASF trivially available for larger cache-coherent
multiprocessor systems, and not only for single-chip multi-
processors.

Another implication of the design constraints is that ASF
has a detailed specification, which we developed for one
main reason: we wanted to ensure that ASF can be imple-
mented in various ways (without constraining implementa-
tion freedom too much), so we needed to avoid the pitfall of
using implementation artifacts as architecture. The only way
of doing this is documenting all corner cases and defining
a sufficiently general behavior. Examples of potential archi-
tecture holes that need to be closed are ASF’s behavior under
virtualization or debugging, and ASF’s interaction with the
paging hardware.

Nonetheless, ASF provides several features that existing
microarchitectures can accommodate with relative ease: ar-
chitecturally ensured forward progress up to a certain trans-
action capacity, and a mechanism for selectively annotating
memory accesses as either transactional or nontransactional.

2.2 ASF specification
ASF provides seven new instructions for entering and leav-
ing speculative code regions (speculative regions for short),
and for accessing protected memory locations (i. e., mem-
ory locations that can be read and written speculatively and
which abort the speculative region if accessed by another
thread): SPECULATE, COMMIT, ABORT, LOCK MOV, WATCHR,
WATCHW, and RELEASE. All of these instructions are available
in all system modes (user, kernel; virtual-machine guest,

28

; DCAS Operation:
; IF ((mem1 = RAX) && (mem2 = RBX)) {
; mem1 = RDI; mem2 = RSI; RCX = 0;
; } ELSE {
; RAX = mem1; RBX = mem2; RCX = 1;
; } // (R8, R9, R10 modified)
DCAS:

MOV R8, RAX
MOV R9, RBX

retry:
SPECULATE ; Speculative region begins
JNZ retry ; Page fault, interrupt, or contention
MOV RCX, 1 ; Default result, overwritten on success
LOCK MOV R10, [mem1] ; Specification begins
LOCK MOV RBX, [mem2]
CMP R8, R10 ; DCAS semantics
JNZ out
CMP R9, RBX
JNZ out
LOCK MOV [mem1], RDI ; Update protected memory
LOCK MOV [mem2], RSI
XOR RCX, RCX ; Success indication

out:
COMMIT
MOV RAX, R10

Figure 1. ASF example: An implementation of a DCAS
primitive using ASF.

host). Figure 1 shows an example of a double CAS (DCAS)
primitive implemented using ASF.

Speculative-region structure. Speculative regions have the
following structure. The SPECULATE instruction signifies the
start of such a region. It also defines the point to which
control is passed if the speculative region aborts: in this
case, execution continues at the instruction following the
SPECULATE instruction (with an error code in the rAX reg-
ister and the zero flag cleared, allowing subsequent code to
branch to an abort handler).

The code in the speculative region indicates protected
memory locations using the LOCK MOV, WATCHR, and WATCHW
instructions. The first is also used to load and store protected
data; the latter two merely start monitoring a memory line for
concurrent stores (WATCHR) or loads and stores (WATCHW).

Speculative regions can optionally use the RELEASE in-
struction to modify a transaction’s read set. With RELEASE,
it is possible to stop monitoring a read-only memory line,
but not to cancel a pending transactional store (the latter is
possible only with ABORT). RELEASE, which is strictly a hint
to the CPU, helps decrease the odds of overflowing transac-
tional capacity and is useful, for example, when walking a
linked list to find an element that needs to be mutated.

COMMIT and ABORT signify the end of a speculative re-
gion. COMMIT makes all speculative modifications instantly
visible to all other CPUs, whereas ABORT discards these
modifications.

ASF supports dynamic nesting, which allows simple
composition of multiple speculative regions into an over-
arching speculative region up to a maximum nesting depth
(256). Nesting is implemented by flattening the hierarchy
of speculative regions (flat nesting): memory locations pro-
tected by a nested speculative region remain protected until
the outermost speculative region ends, and aborts inside a

nested speculative region cause rollback of the whole outer-
most speculative region.

Aborts. Besides the ABORT instruction, there are several
conditions that can lead to the abort of a speculative region:
contention for protected memory; system calls, exceptions,
and interrupts; the use of certain disallowed instructions;
and, implementation-specific transient conditions. Unlike in
Sun’s hardware transactional memory (HTM) design [11],
TLB misses do not cause an abort.

In case of an abort, all modifications to protected memory
locations are undone, and execution flow is rolled back to the
beginning of the speculative region by resetting the instruc-
tion and stack pointers to the values they had directly after
the SPECULATE instruction. No other register is rolled back;
software is responsible for saving and restoring any context
that is needed in the abort handler. Additionally, the reason
for the abort is passed in the rAX register.

Because all privilege-level switches (including interrupts)
abort speculative regions and no ASF state is preserved
across such a context switch, all system components (user
programs, OS kernel, hypervisor) can make use of ASF
without interfering with one another. This differs from Azul
Systems’ HTM design [8], which appears to maintain trans-
actions across system calls.

Selective annotation. Unlike most other architecture ex-
tensions aimed at the acceleration of transactions, ASF al-
lows software to use both transactional and nontransactional
memory accesses within a speculative region.1 This feature
allows reducing the pressure on hardware resources provid-
ing TM capacity because programs can avoid protecting data
that is known to be thread-local. It also allows implementing
STM runtimes or debugging facilities (such as shared event
counters) that access memory directly without risking aborts
because of memory contention.

For example, our compiler (described in in Section 3.1)
automatically makes use of selective annotation to avoid
protecting the local thread’s stack whenever possible.

Because ASF uses cache-line-sized memory blocks as its
unit of protection, software must take care to avoid colocat-
ing both protected and unprotected memory objects in the
same cache line. ASF can deal with some colocation scenar-
ios by hoisting colocated objects accessed using unprotected
memory accesses into the transactional data set. However,
ASF does not allow unprotected writes to memory lines that
have been modified speculatively and raises an exception if
that happens.

Isolation. ASF provides strong isolation: it protects spec-
ulative regions against conflicting memory accesses to pro-
tected memory locations from both other speculative regions
and regular code concurrently running on other CPUs.

1 Each MOV instruction can be selectively annotated to be either transactional
(with LOCK prefix) or nontransactional (no prefix); hence the name selective
annotation.

29

In addition, all aborts caused by contention appear to be
instantaneous: ASF does not allow any side effects caused
by misspeculation in a speculative region to become visible.
These side effects include nonspeculative memory modifica-
tions and page faults after the abort, which may have been
rendered spurious or invalid by the memory access causing
the abort.

Eventual forward progress. ASF architecturally ensures
eventual forward progress in the absence of contention and
exceptions when a speculative region protects not more than
four 64-byte memory lines.2 This enables easy lock-free
programming without requiring software to provide a second
code path that does not use ASF. Because it only holds
in the absence of contention, software still has to control
contention to avoid livelock, but that can be accomplished
easily, for example, by employing an exponential-backoff
scheme.

An ASF implementation may have a much higher capac-
ity than the four architectural memory lines, but software
cannot rely on any forward progress if it attempts to use
more than four lines. In this case, software has to provide
a fallback path to be taken in the event of a capacity over-
flow, for example, by grabbing a global lock monitored by
all other speculative regions.

2.3 ASF implementation variants
We designed ASF such that a CPU design can implement
ASF in various ways. The minimal capacity requirements for
an ASF implementation (four transactional cache lines) are
deliberately low so existing CPU designs can support sim-
ple ASF applications, such as lock-free algorithms or small
transactions, with very low additional cost. On the other
side of the implementation spectrum, an ASF implementa-
tion can support even large transactions efficiently.

In this section, we present two basic implementation vari-
ants and a third, hybrid, variant. We implemented two of
these three variants in the simulator we used in our evalu-
ation (described in Section 4).

Cache-based implementation. A first variant is to keep
the transactional data in each CPU core’s L1 cache and to
use the regular cache-coherence protocol for monitoring the
transactional data set.

Each cache line needs two additional bits: a speculative-
read and a speculative-write bit.3 When a speculative region
protects data cached in a given line, the speculative-read bit
is turned on. Whenever a cache line that has this bit set needs
to be removed from the cache (because of a remote write

2 Eventual means that there may be transient conditions that lead to spurious
aborts, but eventually the speculative region will succeed when retried
continuously. The expectation is that spurious aborts almost never occur
and speculative regions succeed the first time in the vast majority of cases.
3 We assume that the L1 cache is not shared by more than one logical CPU
(hardware thread).

request or because of a capacity conflict), the speculative
region is aborted.

The speculative-write bit is set in addition to the specu-
lative-read bit when a speculative region modifies protected
data (or uses WATCHW to protect it). When this happens to
a dirty cache line, the L1 cache must first write back the
modified data to a backup location (to main memory or to a
higher-level cache).

When a speculative region completes successfully, all
speculative-read and speculative-write bits are flash-cleared.
In this case, the current values in L1 become authoritative
and visible to the remainder of the system. On the other
hand, if a speculative region is aborted, the cache must
first invalidate all cache lines that have the speculative-write
bit set before clearing the speculative-read and speculative-
write bits.

This implementation has the advantage that, potentially,
the complete L1 cache capacity is at disposal for transac-
tional data. However, the capacity is limited by the cache’s
associativity. Additionally, an implementation that wants to
provide the (associativity-independent) architectural mini-
mum capacity of four memory lines using the L1 needs to
ensure that each cache index can hold at least four cache
transactional lines that cannot be evicted by nontransactional
data refills.

LLB-based implementation. Another ASF implementa-
tion variant is to introduce a new CPU data structure called
the locked-line buffer (LLB). The LLB holds the addresses
of protected memory locations as well as backup copies
of speculatively modified memory lines. It snoops remote
memory requests, and if an incompatible probe request is
received, it aborts the speculative region and writes back the
backup copies before the probe is answered.

The advantage of an LLB-based implementation is that
the cache hierarchy does not have to be modified. Specula-
tively modified cache lines can even be evicted to another
cache level or to main memory.4

Because the LLB is a fully associative structure, it is
not bound by the L1 cache’s associativity and can ensure
a larger number of protected memory locations. However,
since fully associative structures are more costly, the total
capacity typically would be much smaller than the L1 size.

Hybrid implementation. It is also possible to combine as-
pects of a cache-based and an LLB-based implementation.
We propose using the L1 cache to monitor the speculative
region’s read set, and the LLB to maintain backup copies of
and monitor its write set.

In this design, each L1 cache line needs only one specu-
lative-read bit. The LLB makes the speculative-write bit
redundant. When the speculative region modifies a protected
cache line, the backup data is copied to the LLB. Thus, dirty

4 We assume the LLB can snoop probes independently from the caches and
is not affected by cache-line evictions.

30

cache lines do not have to be backed up by evicting them to
a higher cache level or main memory.

In comparison to a pure cache-based implementation, this
design minimizes changes to the cache hierarchy, especially
when the all caches participate in the coherence protocols
as first class citizens: the CPU core’s L1 cache remains the
owner of the cache line and can defer responses to incom-
patible memory probes until it has written back the backup
data, without having to synchronize with other caches.

The advantage over a pure LLB-based implementation is
the much higher read-set capacity offered by the L1 cache.

3. Integrating ASF with transactional C/C++
Recently, there have been proposals to add transactional lan-
guage constructs to C and C++ [17], by allowing program-
mers to specify atomic blocks within programs. We have
built a compiler, the Dresden TM Compiler (DTMC), and
a runtime library, ASF-TM, to execute such transactional
C and C++ programs with the help of ASF. To evaluate
ASF, we use a software stack that spans from language-level
atomic blocks (called transaction statements in the propos-
als) down to ASF hardware. This permits us to measure
more accurately how much benefit applications might gain
from using ASF. In particular, we are able to measure poten-
tial overheads that are introduced when translating atomic
blocks into ASF transactions.

Because much of concurrent software written in C and
C++ is based on locks and not atomic blocks, our software
stack also supports existing software with the help of lock
elision [25]. In this paper, we only focus on the evaluation of
programs that use atomic blocks.

We first present our compiler, DTMC, in Section 3.1, ex-
plain the design of a runtime library that uses ASF in Sec-
tion 3.2, discuss how to safely execute nonspeculative code
in Section 3.3, and summarize lessons learned in Section 3.4.

3.1 Dresden TM Compiler
A compiler supporting atomic blocks has to transform lan-
guage-level transactions into machine code that ensures the
atomic executions of the blocks. This could be done with the
help of software transactional memory, locks, or—like in our
case—with the help of ASF.

Atomic blocks come in the form of a C/C++ statement
that a programmer can use to declare that a block of code
should be executed as a transaction. Our compiler supports a
large subset of the transactional language constructs for C++
that have recently been proposed by engineers from Intel,
IBM, and Sun [17].5

DTMC transforms transactional C/C++ programs in a
multipass process. It is based on the LLVM compiler frame-
work [20], which allows the construction of highly mod-
ular compilers. LLVM’s compiler front-end for C/C++

5 It supports transaction statements but does not yet support TM-specific
attributes for functions and classes.

(llvm-gcc) parses and transforms source code into LLVM’s
intermediate representation (IR). To support transaction
statements, we took the TM support code that Red Hat en-
gineers are developing for the GNU Compiler Collection
(gcc-tm) and ported it to llvm-gcc. The output of our
modified llvm-gcc is thus LLVM IR in which transaction
statements are visible.

DTMC maps the transaction statements of the LLVM IR
to calls to a TM runtime library. It uses a compiler pass
that transforms LLVM IR with transaction statements so
(1) memory accesses in transactions are rewritten as calls to
load and store functions in the TM runtime library, (2) trans-
actions are started and committed using calls to the TM
library, and (3) function calls inside transactions are redi-
rected to “transactional” clones of the original functions.
This compiler pass is a much improved and extended ver-
sion of Tanger [13].

The application binary interface (ABI) of the TM runtime
library follows a proposal by Intel [18]. This ABI is not ASF-
specific, but rather designed to be compatible with many
existing STM algorithms and implementations. We want our
compiler to target libraries that provide this ABI instead of
generating ASF code directly because this makes the TM
compiler independent of the TM implementation, and it also
allows linking the TM implementation to the application
either statically or dynamically.

The use of an intermediate TM library will permit run-
ning the same binary code on machines regardless of wheth-
er they support ASF or not. Moreover, the use of a stan-
dardized ABI permits programmers to mix compilers and
STM implementations from different vendors. In particular,
applications can already be developed using the ABI and
an STM implementation. When new hardware features like
ASF would become widely available, the applications could
use them without recompilation.

Having an intermediate TM library that uses an ABI not
specifically designed for ASF can introduce run-time over-
heads. Our approach is to use link-time optimization to re-
duce or even eliminate these overheads. In LLVM, the inter-
mediate representation of the code is still available at the fi-
nal linking stage when creating the application’s executable
code. This allows the compiler to perform whole-program
optimization and code generation, which includes inlining
the functions in the TM library if this library is linked stati-
cally. This generally results in code of the same quality as if
the compiler inserted the TM instrumentation code directly.
Our compiler can also create different code paths for a trans-
action. These code paths use functions for different runtime
modes of the TM, and the TM library determines at runtime
(i. e., when starting or restarting a transaction) which code
path will be executed. For example, an STM and an ASF
code path can coexist and can be optimized independently.
We used static linking and link-time optimization when cre-
ating the application code evaluated in Section 5.

31

extern long cntr;
void increment() {

__tm_atomic {

cntr = cntr + 5;

}
}

extern long cntr;
void increment() {

_ITM_beginTransaction(...);

long l_cntr = (long) _ITM_R8(&cntr);
l_cntr = l_cntr + 5;
_ITM_W8(&cntr, l_cntr);
_ITM_commitTransaction();

}

; mem1 for cntr

SPECULATE
JNZ handle_abort
LOCK MOV RCX, [mem1]
ADD RCX, 5
LOCK MOV [mem1], RCX
COMMIT

Figure 2. An example of how C code with a transaction statement (left) is transformed to targeting a TM library ABI (middle)
and finally to native code that uses ASF (right). Note that additional code around SPECULATE for providing full semantics of
_ITM_beginTransaction has been omitted for brevity.

Figure 2 shows the transformation stages of a simple
atomic block in C code. There is no dependence on ASF
before ASF-TM is linked to the application (last transfor-
mation stage), still link-time optimization can inline ASF
instructions. Please note that several implementation details
have been omitted for clarity (e. g., ASF-TM requires more
software support to begin and commit transactions).

3.2 ASF-TM
ASF-TM is our TM library that implements the TM ABI
using ASF. It adds (1) some features that are required by
the ABI but are not part of ASF and (2) a fallback execu-
tion path in software. We need a fallback path in case ASF
cannot commit a transaction because of one of ASF’s limi-
tations (e. g., capacity limitations or a transaction executing
a system call; see Section 2).

We chose to just provide a serial-irrevocable mode as the
software fallback. This mode already exists in most STMs
as the fallback path for execution of external, nonisolated,
or irrevocable actions. It is also required by the ABI. If
a transaction is in this mode, it is not allowed to abort
itself, but the TM ensures that it will not be aborted and
that no other transaction is being executed concurrently. If
no transaction is in this mode, all transactions execute the
normal TM algorithm (in our case, ASF speculative regions).
Our measurement shows that ASF can handle most of our
current workloads directly in hardware (see Section 5).

If a more elaborate fallback mechanism is needed in a
later version of ASF-TM, one could switch between STM or
ASF transactions (similar to PhasedTM [21]), or one could
ensure that STM transactions can safely run concurrently
with ASF transactions (similar to Hybrid TM [9]).

ASF-TM needs to make sure that conflicting accesses by
concurrent transactions are detected. To do so, it uses ASF
speculative loads and stores for these accesses. This is im-
plemented using ASF assembly code in ASF-TM. Note that
this code will get inlined if we link ASF-TM statically to
the application. Our compiler only uses transactional mem-
ory accesses for data that is potentially shared with other
threads. Therefore, accesses to a thread’s stack are not spec-
ulative or transactional unless the address of a variable on
the stack has been taken.

As we explained previously, we want ASF-TM to be com-
patible with the existing TM ABI, so we cannot rely on the
compiler to insert a SPECULATE instruction into the appli-

cation code. Instead, transactions are started by calling a
special “transaction begin” function that is a combination
of a software setjmp implementation and a SPECULATE in-
struction. Because ASF does not restore CPU registers (ex-
cept the instruction and stack pointers), we use the soft-
ware setjmp to checkpoint and restore CPU registers6 in
the current thread’s transaction descriptor. Additionally, we
partially save the call stack to allow the function to return a
second time in the event of an abort.

When ASF detects a conflict, it aborts by rolling back all
speculatively modified cache lines and resuming execution
at the instruction that follows the SPECULATE instruction,
which is located in the “transaction begin” function. Trans-
action restarts are then emulated by letting the application
return from this function again, thus making it seem as if
the previous attempt at running the transaction never hap-
pened. The function returns a (TM-ABI-defined) value that
indicates whether changes to the stack that have not been
tracked by ASF have to be rolled back, and which code path
(e. g., ASF or serial-irrevocable mode) has to be executed.
Our compiler adds code that performs the necessary actions
according to the return value.

Before starting the ASF speculative region, the begin
function additionally initializes the tracking of memory
management functions (see Section 3.3) and performs sim-
ple contention management if necessary (e. g., use exponen-
tial back-off). ASF transactions that fail to execute a certain
number of times or experience ASF capacity overflows will
get restarted in serial-irrevocable mode.

To commit an ASF transaction, it is sufficient to call a
commit function of the ASF-TM library that contains an
ASF COMMIT instruction.

3.3 Safely executing nonspeculative code
There are a few challenges when implementing ASF-TM.
ASF permits nonspeculative memory accesses within trans-
actions. This allows the reduction of the read-set size of a
transaction and, hence, larger transactions can be executed
with ASF. However, as a consequence, we need to take care
of nonspeculative code called from within an ASF specula-
tive region.

6 The calling convention that is used in the application code determines
which registers have to be restored.

32

ASF requires programmers or compilers to explicitly
mark memory accesses within a transaction that are specula-
tive. If a nontransactional function f (e. g., within an external
library) were to be called within an ASF speculative region,
all memory accesses of this function would be nonspecula-
tive. These nonspeculative memory updates of f could cause
consistency issues if the region is aborted.

Transactions might call external functions for several rea-
sons: for example, memory management or exception han-
dling. STMs therefore deal with calls to external functions
in different ways: (1) by providing a transactional version of
the function in the TM library or by the programmer; (2) by
relying on the programmer to mark functions that can safely
be executed from within a software transaction; or, (3) by
falling back to serial-irrevocable mode.

ASF-TM uses Approach 1, for example, for a transac-
tional malloc function. Because the semantics of this func-
tion are known, the transactional version can be built so it is
robust against asynchronous aborts by ASF. This is particu-
larly easy to ensure for functions that only operate on thread-
local data. For example, ASF-TM uses a custom memory al-
locator for in-transaction allocations to avoid having to abort
and execute in serial-irrevocable mode. This allocator still
uses the default allocator internally, but executing the stan-
dard malloc function in a speculative region would not be
safe because of potential incomplete updates to the memory
allocation metadata.

ASF-TM can, but currently does not, support Approach
2. The problem with this approach is that nontransactional
functions can be aborted at any point when using ASF (e. g.,
if a memory location that has been speculatively read is mod-
ified in another thread). Such asynchronous aborts are not
possible in STM-based systems [18], and it is easier for a
programmer to determine if it is safe to call a nontransac-
tional function within a transaction in such systems. Hence,
ASF-TM’s safety requirements are different than those of
STMs, and it is not clear that expecting the programmer to
consider both is beneficial in the long term.

When compiling for ASF-TM, DTMC will always use
Approach 3 (i. e., switch a transaction to serial-irrevocable
mode) before calling a function for which there exists no
ASF-safe version.

3.4 Lessons learned
ASF is very well aligned with a standard software stack.
From our integration of ASF with ASF-TM and DTMC, we
learned that the current ASF signaling mechanisms [2] could
be improved to reduce the overhead and the complexity of
ASF-TM. In particular, reporting errors via the SPECULATE
instruction—instead of by generating exceptions—simpli-
fied ASF-TM. We therefore chose to implement a variant
of ASF in the ASF simulator and built our software for this
variant. We hope that a future revision of the ASF specifica-
tion will reflect these changes.

4. ASF simulator
For our evaluation of ASF, we have to rely largely on simu-
lation, because the costs of implementing and verifying the
implementation of such a large-scale feature in a commer-
cial microprocessor are prohibitive and hard to justify while
still exploring the design space.

PTLsim [32] has been chosen out of the wealth of avail-
able simulators since it initially fulfilled many of our require-
ments:

• AMD64 ISA simulation: ASF is specified as an exten-
sion to AMD’s established AMD64 instruction set archi-
tecture (ISA); therefore, it is crucial for the simulator to
support the same ISA. In addition, this support allows
us to easily reuse the existing compiler infrastructure,
binaries, and compiled operating system kernels. Using
the same binary code will generate more relevant per-
formance predictions and comparable numbers for native
and simulated execution.

• Full-system simulation: Although several academic pa-
pers (e. g., [22, 26]) have proposed fully virtualized HTM
implementations, a realistic implementation such as ASF
will have quantitative and qualitative limitations on the
TM semantics it provides. ASF, for example, aborts on-
going speculative regions whenever there is a timer in-
terrupt, task switch, or page fault. These events are con-
trolled by the OS and potentially have a large impact on
performance perceived by code using ASF. To assess this
impact, it is therefore necessary to closely model their be-
havior, which is best done by putting the operating sys-
tem into the simulation, too.
PTLsim utilizes Xen’s paravirtualized interface [4] to
provide a hardware abstraction to the system under sim-
ulation. Both applications and the (paravirtualized) OS
kernel are simulated in PTLsim’s processor core model,
making it possible to realistically capture the interplay
between ASF and effects caused by the operating system.

• Detailed, accurate timing model: Proper OS kernel in-
teraction and identical ISA lay a foundation to gener-
ate simulation results that can be compared with results
obtained by native execution. Simulation fidelity then
largely depends on the accuracy of the simulation mod-
els used. For our analysis, we require a detailed timing
processor core model that is able to produce results that
are similar to those obtained on native AMD OpteronTM

processors of families 0Fh (K8 core) and 10h (formerly
codenamed “Barcelona”).
Fortunately, PTLsim features a detailed timing model
that models an out-of-order core and an associated cache
hierarchy in a near-cycle-accurate fashion. We have built
on previous tuning attempts [32] and extended the simu-
lator to model the interactions between multiple distinct
processor cores and memory hierarchies with good track-
ing of native results [12].

33

• Rapid prototyping support: Detailed simulation mod-
els are slower than native execution by several orders
of magnitude, because simulating a single cycle usually
takes much more than one cycle on the host machine.
For our explorative experiments, we cannot pay the ex-
tremely high overhead caused by the very detailed RTL-
level timing simulators. We believe PTLsim provides a
good balance between simulator precision and incurred
slowdown, in particular because it allows execution of
uninteresting parts of the benchmark runs, such as OS
boot and benchmark initialization, at native speed by pro-
viding a seamless switchover between native and simu-
lated execution.
PTLsim’s level of modeling and speed of simulation also
made it feasible to rapidly prototype and debug different
implementations of ASF, while still being able to take an
in-depth look at how ASF interacts with features found
in current out-of-order microprocessors.
For this work, we have extended PTLsim to support

proper multiprocessing by introducing truly separated pro-
cessor cores and memory hierarchies. We have also imple-
mented a simplified cache-coherence model that accurately
captures first-order effects caused by cache coherence [12],
but ignores further topology information such as placement
of cores on chips or sockets. In addition, we have tuned
the characteristics of the simulated core to closely model an
AMD Opteron processor.

We have added multiple implementations of ASF to PTL-
sim and have carefully crafted the interaction between the
new ASF functionality and existing mechanisms that en-
able out-of-order processing. For that, we have modeled ad-
ditional ordering constraints and fencing semantics for the
ASF primitives—we strive for a faithful model of feasible
future hardware implementations.

We have currently implemented two of the implementa-
tion variants introduced in Section 2.3: LLB-based imple-
mentations of varying capacity, and implementations that
combine the L1 cache for read-set tracking and an LLB for
write-set tracking.

Our simulator has been configured to match the general
characteristics of a system based on AMD Opteron proces-
sors formerly codenamed “Barcelona” (family 10h), with a
three-wide clustered core, out-of-order instruction issuing,
and instruction latencies modeled after the AMD Opteron
microprocessor [1]. The cache and memory configuration is:

• L1D: 64 KB, virtually indexed, 2-way set associative, 3
cycles load-to-use latency.

• L2: 512 KB, physically indexed, 16-way set associative,
15 cycles load-to-use latency.

• L3: 2 MB, physically indexed, 16-way set associative, 50
cycles load-to-use latency.

• RAM: 210 cycles load-to-use latency.
• D-TLB: 48 L1 entries, fully associative; 512 L2 entries,

4-way set associative.

5. Evaluation
To evaluate ASF, we start by assessing the accuracy of our
simulator. That is, we measure the deviation between sim-
ulated performance and performance of native execution on
a real machine. A close match between simulated and real
executions supports our overall approach because it indi-
cates how well the simulator models a realistic processor
microarchitecture. Current high-performance x86 micropro-
cessor designs are highly complex and, hence, performance
prediction through simulation is nontrivial. To our knowl-
edge, we are the first to try to evaluate this similarity in the
TM literature, extending our earlier work [12].

We evaluate ASF using (1) the applications from the
STAMP [6] TM benchmark suite7 and (2) the well-known
IntegerSet microbenchmarks. We use the standard STAMP
configuration for simulator environments.

IntegerSet runs search, insert, and remove operations on
an ordered set of integers, and is implemented either using
a linked list, a skip list, a red-black tree, or a hash table.
The principles behind these benchmarks resemble the de-
scription of the integer-set benchmarks in [11]. Operations
are completely random and on random elements. The initial
size of a set (i. e., the number of elements in the set) is half
the size of the key range from which elements are drawn.
No insertion or removal happens if the element is already
in or not in the set, respectively. However, we do not have
access to the original benchmark code. Hence, some bench-
marks (e. g., the red-black tree implementation) could dif-
fer slightly. All these programs use several threads and im-
plement synchronization using atomic blocks (i. e., C/C++
transaction statements). We used DTMC to compile the ap-
plications and used ASF-TM as the TM library.8 To reduce
impact from the memory allocator, we have selected the allo-
cator with best scalability out of glibc 2.10 standard malloc,
glibc 2.10 experimental malloc, and the Hoard memory al-
locator [5] for the presented results. Runs marked as sequen-
tial are single-threaded executions of these programs with
no synchronization mechanism in use and no instrumenta-
tion added.

Following the performance evaluation, we additionally
investigate ASF runtime overheads and the effects of differ-
ent ASF capacities and ASF’s early-release feature.

We use PTLsim-ASF (as described in Section 4) as our
simulation testbed. The simulated machine has eight CPU
cores, each having a clock speed of 2.2 GHz. Because PTL-
sim does not yet model limited cross-socket bandwidths,
these eight cores behave as if they were located on the same
socket, resembling future processors with higher levels of

7 We exclude the Bayes and Yada applications in our measurements. We
have observed nonreproducible behavior for Bayes with several TM imple-
mentations, and Yada has extremely long transactions and does not show
any scalability with any of the TMs we analyzed.
8 DTMC is based on LLVM 2.6. Our applications are linked against glibc
2.10.

34

0 %
5 %

10 %
15 %
20 %
25 %
30 %
35 %

Genome

Intruder

K-Means (l)

K-Means (h)

Labyrinth

SSCA2
Vacation (l)

Vacation (h)

P
er

fo
rm

an
ce

 d
ev

ia
tio

n
(s

im
ul

at
ed

 o
ve

r
re

al
)

Figure 3. PTLSim accuracy for the runtime of the STAMP
benchmarks (no TM, no ASF, one thread) for simulated with
respect to native execution.

core integration.9 We evaluate ASF using four implementa-
tions: (1) with an LLB of 8 lines; (2) with an LLB of 256
lines; (3) with L1/LLB of 8 lines; and, (4) with L1/LLB
of 256 lines. They are denoted by LLB-8, LLB-256, LLB-
8 w/ L1, and LLB-256 w/ L1, respectively. For our STM
measurements, we use TinySTM [14] (version tinySTM++
0.9.9) in write-through mode.

Simulator accuracy. Figure 3 shows the difference in run-
times between execution on a real machine10 and a simu-
lated execution within PTLsim-ASF, in which we adapted
the available parameters of the simulation model to match
the characteristics of the native microarchitecture. For five
out of the eight STAMP benchmarks, PTLsim-ASF stays
within 10–15% of the native performance, which is in line
with earlier results for smaller benchmarks [12]. Vacation
and K-Means seem to exercise mechanisms in the microar-
chitecture that perform differently in PTLsim-ASF and in
our selected native machine. Clearly, PTLsim cannot model
all of the performance relevant microarchitectural subtleties
present in native cores, because many of them are not pub-
lic, highly specific to the revision of the microprocessor, and
difficult to reproduce and identify.

One source of the inaccuracies we observed might be a
PTLsim quirk: although PTLsim carefully models a TLB
and the logic for page-table walks, it only consults them for
loads. Stores do not query the TLB and therefore are not
delayed by TLB misses, do not update TLB entries, and are
not stalled by bandwidth limitations in the page-table walker.
The effect on accuracy likely is minor since translations for
many stores already reside in the TLB because of a prior
load. Nonetheless, we will add a better simulation of stores
in a future release of PTLsim-ASF.

Despite these differences, we think that PTLsim models a
realistic microarchitecture and captures several novel inter-
actions in current microprocessors. For our main evaluation
we conduct all experiments—including the baseline STM
runs—inside the simulator to make sure that our results are
not affected by the discrepancies.

9 In a previous study [12], we have analyzed the impact of cross-socket
communication for benchmarks of various size.
10 AMD Opteron processor formerly codenamed “Barcelona,” family 10h,
2.2 GHz.

-1

 0

 1

-10 -5 0 5 10

LLB-8
LLB-256

LLB-8 w/ L1
LLB-256 w/ L1

STM
Sequential

 0

 5

 10

 15

 20

 1 2 4 8

STAMP: Genome

E
xe

cu
tio

n
tim

e
(m

s)

27.8

 0

 5

 10

 15

 1 2 4 8

STAMP: Intruder

 0

 2

 4

 6

 8

 10

 1 2 4 8

STAMP: K-Means (low)

E
xe

cu
tio

n
tim

e
(m

s)

 0

 1

 2

 3

 4

 5

 1 2 4 8

STAMP: K-Means (high)

 0

 5

 10

 15

 20

 1 2 4 8

STAMP: Labyrinth

E
xe

cu
tio

n
tim

e
(m

s)

71.4 89.2 92.9 109.6

 0

 5

 10

 15

 20

 1 2 4 8

STAMP: SSCA2

25.8

 0

 5

 10

 15

 20

 1 2 4 8

STAMP: Vacation (low)
E

xe
cu

tio
n

tim
e

(m
s)

Number of threads

40.1 26.4

 0

 5

 10

 15

 20

 1 2 4 8

STAMP: Vacation (high)

Number of threads

49.4 32.5

Figure 4. Scalability of applications, with four ASF imple-
mentations and varying thread count (execution time; lower
is better). The arrows indicate STM values that did not fit
into the diagram. The horizontal bars show the execution
time for execution of sequential code (without a TM).

ASF performance. Figure 4 presents scalability results for
selected applications from the STAMP benchmark suite.11

We also compare the performance of ASF-based TM to the
performance of finely tuned STM (TinySTM) and to serial
execution of sequential code (without a TM).

We observe that ASF-based TMs show very good scal-
ability and much better performance than STM for some
applications, notably genome, intruder, ssca2, and vacation.
Other applications such as labyrinth do not scale well with
LLB-8 and LLB-256 because the TM uses serial-irrevocable
mode extensively, yet performance is still significantly bet-
ter than STM. Interestingly, the applications that do not scale
well are those with transactions that have large read and
write sets (according to Table III in [6]).

For applications with little contention and short trans-
actions, all four ASF variants perform well. For other ap-
plications, LLB-256 usually outperforms the other imple-

11 We added appropriate padding to the entry points of the main data
structures to avoid unnecessary contention aborts due to false sharing of
cache lines.

35

-1

 0

 1

-10 -5 0 5 10

LLB-8 LLB-256 LLB-8 w/ L1 LLB-256 w/ L1

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8

Intset:LinkList
(range=28, 20% upd.)

T
hr

ou
gh

pu
t (

tx
/µ

s)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8

Intset:LinkList
(range=512, 20% upd.)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8

Intset:SkipList
(range=1024, 20% upd.)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8

Intset:SkipList
(range=8192, 20% upd.)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8

Intset:RBTree
(range=1024, 20% upd.)

T
hr

ou
gh

pu
t (

tx
/µ

s)

Number of threads

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8

Intset:RBTree
(range=8192, 20% upd.)

Number of threads

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36

 1 2 4 8

Intset:HashSet
(range=256, 100% upd.)

Number of threads

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36

 1 2 4 8

Intset:HashSet
(range=128000, 100% upd.)

Number of threads

Figure 5. Scalability of IntegerSet with linked list, skip list, red-black tree, and hash set, with four ASF implementations and
varying thread count and key range (throughput; higher is better).

mentation variants because LLB-8 suffers from the transac-
tion lengths and L1/LLB is susceptible to cache-associativity
limitations. Yet, it is interesting to note, even the LLB-8-
based implementation provides benefits for many applica-
tions.

To summarize, the ASF-based TMs have a significantly
smaller single-thread overhead than the STM and scale well
for many benchmarks. The STM-based variants scale as
well, but they outperform serial execution only with many
threads. In general, the ASF-based TMs outperform the
STM by almost an order of magnitude.
Scalability. Figure 5 presents scalability results for the
IntegerSet benchmark. We vary the key range between
{0 . . .28} and {0 . . .128000}.

In all IntegerSet variants except the hash-set-based one,
the LLB-8 implementation performs poorly because its
capacity is insufficient for holding the parts of the data
structure that are accessed, leading to constant execution
of the software fallback path. This fallback path is serial-
irrevocable mode and suffers from contention if used exces-
sively by many threads. The cache-based implementations
generally perform equally well, indicating that the write set
of all transactions is smaller than 8 cache lines. LLB-256
(without the L1 cache) never performs significantly worse
than the cache-based implementations, indicating that the
read set always fits into 256 cache lines, and occasionally
outperforms them because it is not susceptible to cache-
associativity limitations. The performance drop observed for
the linked list with more than four threads results from the
increased likelihood of conflict in the sequentially traversed
list. In general, the hash-set variant performs best and can
tolerate the largest key range and the largest update rates be-
cause it has the smallest transactional data set and very few
conflicts.
ASF abort reasons. Figure 6 provides a breakdown of the
abort reasons in the STAMP applications with different ASF

implementations. Unsurprisingly, the implementation with
the small dedicated buffer (eight-entry LLB) suffers from
many capacity aborts for most benchmarks, while the larger
dedicated buffer (256-entry LLB) usually has the least ca-
pacity aborts. Adding the L1 cache for tracking transac-
tional reads (“+L1”) does not always reduce capacity aborts,
but actually increases them for several benchmarks. Three
reasons contribute to the increase. First, although the L1
cache has a large total capacity, it has limited associativ-
ity (two-way set associative) and therefore usable capacity
is dependent on address layout. Second, our current read-
set-tracking implementation does not modify the cache-line
displacement logic. Nonspeculative accesses may displace
cache lines used for tracking the read set. Finally, cache lines
may be brought into the cache out of order and purely due
to speculation of the core. These additional cache lines may
further displace lines that track the transaction’s read set.

Since displacement of cache lines with transactional data
causes capacity aborts, the large number of those is not
only caused by actual capacity overflows, but may be caused
by disadvantageous transient core behavior. For our current
study, we fall back to serial mode to handle capacity aborts,
therefore reducing contention aborts for benchmarks with
high capacity failures. To leverage the partially transient na-
ture of capacity aborts, one could also retry aborting transac-
tions in ASF and hope for favorable behavior. Furthermore,
we will tackle the issue from the hardware side by containing
the random effects and ensuring that we meet the architec-
tural minimum capacity. Both aspects are subject of current
research.
ASF capacity. Figure 7 presents the scalability in terms
of transaction size versus throughput for runs with eight
threads. We vary the transaction size (i. e., the number
of memory locations accessed) by initially populating the
linked list with different amounts of elements. LLB-8 is not
sufficient to hold the working set for larger transactions.

36

-1

 0

 1

-10 -5 0 5 10

Contention
Abort (malloc)

Page fault
System call

Capacity

 0

 10

 20

 30

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

STAMP: Genome

A
bo

rt
 r

at
e

(%
)

LLB: 8 256 8+L1 256+L1
 0

 10

 20

 30

 40

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

STAMP: Intruder

8 256 8+L1 256+L1

 0

 1

 2

 3

 4

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

STAMP: K-Means (low)

A
bo

rt
 r

at
e

(%
)

LLB: 8 256 8+L1 256+L1
 0

 5

 10

 15

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

STAMP: K-Means (high)

8 256 8+L1 256+L1

 0

 10

 20

 30

 40

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

STAMP: Labyrinth

A
bo

rt
 r

at
e

(%
)

LLB: 8 256 8+L1 256+L1
 0

 0.1

 0.2

 0.3

 0.4

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

STAMP: SSCA2

8 256 8+L1 256+L1

 0
 10
 20
 30
 40
 50
 60

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

STAMP: Vacation (low)

A
bo

rt
 r

at
e

(%
)

LLB: 8 256 8+L1 256+L1
 0

 10

 20

 30

 40

 50

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

STAMP: Vacation (high)

8 256 8+L1 256+L1

Figure 6. Abort rates of applications, with four ASF imple-
mentations and varying thread count. The different patterns
identify the cause of aborts.

Transactions have to be executed in software fallback mode
for most linked-list transactions with more than eight ele-
ments. For the red-black tree, the tree height is most de-
termining for the transaction size. At around 256 elements,
almost all transactions run in serial-irrevocable mode for
LLB-8.

The overall throughput for the list benchmark decreases
with problem size because traversing longer lists increases
conflict ratio, work per transaction, and chance for capac-
ity overflow. LLB-256, LLB-8 w/ L1, and LLB-256 w/ L1
behave similarly with this benchmark.

Early release benefits. Figure 8 presents the throughput
increase due to the use of early releasing of elements in a
transaction’s read set. Similar to the well-known hand-over-
hand locking technique, we only need to keep the current
position in the list in the read set during list traversal. We
consider a linked list initially populated with 2i elements,
with 3 ≤ i ≤ 9. Using early release makes LLB-8 sufficient
because we do not keep all accessed list elements in the
read set anymore. Also, throughput increases significantly

 0
 1
 2
 3
 4
 5
 6
 7
 8

 6 14 30 62 126 254 510

Intset:LinkList (8 threads, 20% update)

T
hr

ou
gh

pu
t (

tx
/µ

s) LLB-8
LLB-256

LLB-8 w/ L1
LLB-256 w/ L1

 0
 2
 4
 6
 8

 10
 12
 14
 16

 8 16 32 64 128 256 512 1024 2048 4096

Intset:RBTree (8 threads, 20% update)

T
hr

ou
gh

pu
t (

tx
/µ

s)

Initial size

Figure 7. Influence of ASF capacity on throughput for dif-
ferent ASF variants (red-black tree and linked list with 20%
update rate with eight threads).

 0
 2
 4
 6
 8

 10
 12
 14
 16

 6 14 30 62 126 254 510

Intset:LinkList (LLB 8)

T
hr

ou
gh

pu
t (

tx
/µ

s)
Without early release

With early release

 0
 2
 4
 6
 8

 10
 12
 14
 16

 6 14 30 62 126 254 510

Intset:LinkList (LLB 256)

T
hr

ou
gh

pu
t (

tx
/µ

s)

Initial size

Figure 8. Early release impact: throughput amelioration
with linked list (20% update rate, eight threads).

because the chance of conflicts with other transactions de-
creases.

Although early release has been discussed controver-
sially [30], we think it enables interesting uses cases for
expert programmers of lock-free data structures. Our exper-
iments with very limited ASF hardware resources show how
early release can increase the applicability of ASF. We ac-
knowledge that early release has complex interactions with
the simple TM semantics. Simpler interfaces, such as open
nesting [24], and compiler support may simplify this task in
the future.

ASF single-thread overheads. To quantify the perfor-
mance improvement seen with ASF, we have inspected some
benchmark runs more closely and broke up the spent cycles
into categories. Because adding online timing analysis adds
bookkeeping work, interferes with compiler optimization
steps, increases cache traffic, and impairs pipeline interac-
tion, we refrained from adding the statistics code into the
application or run-time. Instead, we manually annotated the
compiled final binaries—marking assembly code line-by-

37

Application / % updates / size linked list / 20% / 128 skip list / 20% / 128 red-black tree / 20% / 128 hash set / 100% / 128
ASF STM Ratio ASF STM Ratio ASF STM Ratio ASF STM Ratio

Non-instr. code 0 0 – 0 0 – 0 0 – 9738 0 0.00
Instr. app. code 1368105 1747385 1.28 1107561 1793351 1.62 2039471 281328 0.13 78822 87368 1.11

Abort/restart 0 0 – 0 0 – 0 0 – 426147 0 0.00
Tx load/store 1029659 31024930 30.13 652817 10073146 15.43 233246 7623913 32.69 533696 5013248 9.39

Tx start/commit 1322509 1087201 0.82 1276152 1176545 0.92 1306687 1033154 0.79 1263550 1316656 1.04

Table 1. Single-thread breakdown of cycles spent inside transactions for ASF-TM (with LLB-256) and TinySTM.

 0

 0.2

 0.4

 0.6

 0.8

 1

ASF STM ASF STM ASF STM ASF STM

O
ve

rh
ea

d
br

ea
kd

ow
n

LinkedList SkipList RBTree HashSet

Tx non-instr. code
Tx app. code
Abort waste

Tx load/store
Tx start/commit

Figure 9. Single-thread overhead details for ASF-TM (with
LLB-256) and TinySTM. All values normalized to the STM
results of the respective benchmark.

line with one of the categories “TX entry/exit,” “TX load/
store,” “TX abort,” and “application”—and extended our
simulator to produce a timed trace of the execution. We then
produced the cycle breakdown by offline analysis and ag-
gregation of the traces, without any interference with the
benchmarks execution.

Figure 9 and Table 1 present the details of the compo-
sition of the overhead imposed by the TM stack based on
ASF or on STM. The results are for single-threaded runs
of the IntegerSet benchmark on the LLB-256 implementa-
tion. Because there is only one thread, there are no aborts
caused by memory contention. All aborts reported for the
hash-set variant occur because of page faults, which require
OS-kernel intervention and therefore abort the ASF specula-
tive regions.

The overhead of starting and committing transactions
is similar for ASF and STM in single-thread executions,
largely due to the additional code that is run for entering
a transaction. As described in Section 3.2, we had to add
code to the ASF implementation that provides the seman-
tics of the ABI on top of the SPECULATE instruction. For
small transactions, this cost can be the dominant overhead
in comparison to the uninstrumented code. Looking at ways
to integrate the ASF primitives more directly, and thus with
less overhead, is one of our future topics, because it requires
more extensive transformations in LLVM.

Although transactional loads and stores are much more
costly in general in an STM, we were surprised by the differ-
ence in improvement for different benchmarks. If we com-
pare the red-black tree and the hash set, we find that there is
almost a factor of 33× speed-up for transactional loads and
stores for the tree, and only 9× for the hash-set. On closer in-
spection we found that this can be attributed to cache effects:

the hash set has many cache misses, because its data access
pattern is mostly random and all accesses update the set,
which in total is larger than the first and second level caches
(217 buckets, with 16 bytes/bucket). With out-of-order exe-
cution, a large part of the STM’s constant additional compu-
tation and memory traffic overhead can be effectively inter-
leaved with the cache misses and in general has less impact
on the incurred relative slowdown.

The additional aborts due to semantic limitations of ASF
(see Section 3.3) have negligible performance impact for our
single-threaded measurements.

6. Related work
The first hardware TM design was proposed by Herlihy and
Moss [16]. It is an academic proposal that does not ad-
dress the capacity constraints of modern hardware. A sep-
arate transactional data cache is accessed in parallel to the
conventional data cache. Introducing such a parallel data
cache would be intrusive to the implementation of the main
load-store path. This would require massive modifications
that would make this mechanism impractical to add to cur-
rent microprocessors. By contrast, ASF can be implemented
without changes to the cache hierarchy.

Shriraman et al. [29] propose two hardware mechanisms
intended to accelerate an STM system: alert-on-update and
programmable data isolation. The latter mechanism, which
is used for data versioning, relies on heavy modifications
to the processor’s cache-coherence protocol: the proposed
TMESI protocol extends the standard MESI protocol (four
states, 14 state transitions) with another five states and 30
state transitions. We regard this explosion of hardware com-
plexity as incompatible with our goal of being viable for in-
clusion in a high-volume commercial microprocessor.

Rajwar et al. [26] propose a virtualized transactional
memory (VTM) to hide platform-specific resource limita-
tions. This approach increases the hardware complexity un-
necessarily: we strongly believe virtualization is better han-
dled in software.

Several other academic proposals for hardware TM have
been published more recently. To keep architectural ex-
tensions modest, proposals primarily either restrain the
size of supported hardware transactions (e. g., HyTm [9,
19], PhTM [21]), or limit the offered expressiveness (e. g.,
LogTM-SE [31], SigTM [23]). Each of these hardware ap-
proaches is accompanied by software that works around the
limitations and provides the interface and features of STM:
flexibility, expressiveness, and large transaction sizes.

38

Our work differs from these approaches in several re-
spects. First, ASF requires no changes to the cache-coher-
ence protocol and no additional CPU data structures for
bookkeeping, such as memory-address signatures or logs.
Second, ASF does not depend on a runtime system and can
be used in all system components including the OS kernel.
Finally, we evaluated ASF using two hardware-inspired im-
plementations for an out-of-order x86 core simulator, giving
us high confidence that ASF can be implemented in a high-
volume commercial microprocessor.

Intel’s HASTM [28] is an industry proposal for accelerat-
ing transactions executed entirely in software. It consists of
ISA extensions and hardware mechanisms that together im-
prove STM performance. The proposal allows for a reason-
able, low-cost hardware implementation and provides per-
formance comparable to HTM for some types of workloads.
However, because the hardware supports read-set monitor-
ing only, it has fewer application scenarios than HTM. For
instance, it cannot support most lock-free algorithms.

Sun’s Rock processor [11] is an architectural proposal for
TM that was actually implemented in hardware. It it based
on the sensible approach that hardware should only pro-
vide limited support for common cases and advanced func-
tions must be provided in software. Early experiences with
this processor have shown encouraging results but also re-
vealed some hardware limitations that severely limit perfor-
mance. Notably, unlike ASF, TLB misses abort transactions.
Rock also does not support selective annotation, as described
in Section 2. Finally, Rock does not provide any liveness
guarantee, so lock-free algorithms cannot rely on forward
progress and have to provide a conventional second code
path. By contrast, ASF does ensure forward progress when
protecting not more than four memory lines at least in the
absence of contention.

Azul Systems [8] has developed multicore processors
with HTM mechanisms built in. These mechanisms are prin-
cipally used for lock elision in Java to accelerate locking.
The solution appears to be tightly integrated with the pro-
prietary software stack, so not a general-purpose solution. It
also does not support selective annotation like ASF.

Diestelhorst and Hohmuth [12] described an earlier ver-
sion of ASF, dubbed ASF1, and evaluated it for accelerat-
ing an STM library. The main difference between ASF1 and
the current revision, ASF2, is that ASF1 did not allow dy-
namic expansion of the set of protected memory locations
once a transaction had started the atomic phase in which it
could speculatively write to protected memory locations. As
a consequence of this restriction, the ASF1-enabled STM
system used ASF1 only for read-set monitoring (because
the read set could be expanded dynamically) and resorted to
purely software-based versioning. The resulting hybrid STM
system cannot be compared directly to ASF-TM because it
did not require serialization in case of capacity overruns. In
general, it performed slightly better than TinySTM for the

red-black-tree and linked-list microbenchmarks presented in
Section 5 (≈10 % performance improvement with an LLB-8
configuration).

7. Conclusion
In this paper, we have presented a system that permits an effi-
cient execution of transactional programs. It consists of a full
system stack comprised of ASF, an experimental AMD64 ar-
chitecture extension for parallel programming; three propos-
als for ASF hardware implementations; a compiler, DTMC,
for transactional programs; and, a runtime, ASF-TM. Our
evaluation indicates that this system improves performance
compared to previous software-only solutions by a signifi-
cant margin, and provides good scalability with most work-
loads.

We also presented PTLsim-ASF, a version of the full-
system out-of-order-core AMD64 simulator PTLsim that we
enhanced with a faithful simulation of ASF. Our simulator
closely tracks the native execution performance of current
AMD CPUs, giving us confidence in our measurement re-
sults.

Unlike many previous hardware-acceleration proposals
for TM systems, ASF has been developed in the framework
of constraints that apply to the development of modern high-
volume microprocessors. We hope to help other researchers
get a better understanding of how constrained this environ-
ment is, and what realistically can be expected in terms of
TM acceleration from future CPU products. Nonetheless,
ASF does provide a number of novel features, including se-
lective annotation and an architecturally ensured minimum
transaction capacity.

Our transactional-memory compiler, DTMC, directly tar-
gets ASF via ASF-TM, our TM runtime. We have demon-
strated that, for the workloads we analyzed, no sophisticated
STM system is needed to maintain good performance in
most cases. A serializing software fallback mode plus a few
optimizations aimed at requiring fewer ASF aborts were suf-
ficient.

We plan to make DTMC, ASF-TM, and PTLsim-ASF
publicly available to give early adopters a chance to try out
ASF.

Acknowledgments
We are very grateful to Richard Henderson and Aldy Her-
nandez of Red Hat for working on and sharing gcc-tm.

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement No

216852.

References
[1] Software Optimization Guide for AMD Family 10h Proces-

sors. Advanced Micro Devices, Inc., 3.05 edition, Jan. 2007.
[2] Advanced Synchronization Facility - Proposed Architectural

Specification. Advanced Micro Devices, Inc., 2.1 edition,
Mar. 2009.

39

[3] G. M. Amdahl. Validity of the single processor approach
to achieving large scale computing capabilities. Readings in
computer architecture, 2000.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of the 19th ACM
symposium on Operating systems principles (SOSP), Boston
Landing, NY, USA, 2003.

[5] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wil-
son. Hoard: A scalable memory allocator for multithreaded
applications. In Proceedings of the 9th international con-
ference on Architectural support for programming languages
and operating systems (ASPLOS), 2000.

[6] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun. STAMP: Stanford transactional applications for multi-
processing. In Proceedings of The IEEE International Sym-
posium on Workload Characterization (IISWC), Seattle, WA,
USA, Sept. 2008.

[7] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu,
S. Chiras, and S. Chatterjee. Software transactional memory:
Why is it only a research toy? Commun. ACM, 51(11), 2008.

[8] C. Click. Azul’s experiences with hardware transactional
memory. In HP Labs - Bay Area Workshop on Transactional
Memory, Jan. 2009.

[9] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. In Proceed-
ings of the 12th international conference on Architectural sup-
port for programming languages and operating systems (AS-
PLOS), San Jose, CA, USA, 2006.

[10] D. Dice, O. Shalev, and N. Shavit. Transactional locking
II. In Proceedings of the 20th International Symposium on
Distributed Computing (DISC), Stockholm, Sweden, 2006.

[11] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience
with a commercial hardware transactional memory implemen-
tation. In Proceeding of the 14th international conference on
Architectural support for programming languages and oper-
ating systems (ASPLOS), Washington, DC, USA, 2009.

[12] S. Diestelhorst and M. Hohmuth. Hardware acceleration
for lock-free data structures and software-transactional mem-
ory. In Proceedings of the Workshop on Exploiting Paral-
lelism with Transactional Memory and other Hardware As-
sisted Methods (EPHAM), Boston, MA, USA, Apr. 2008.

[13] P. Felber, C. Fetzer, U. Müller, T. Riegel, M. Süßkraut, and
H. Sturzrehm. Transactifying applications using an open com-
piler framework. In Proceedings of the 2nd ACM SIGPLAN
Workshop on Transactional Computing (TRANSACT), Port-
land, OR, USA, Aug. 2007.

[14] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tun-
ing of word-based software transactional memory. In Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), Salt Lake
City, UT, USA, Feb. 2008.

[15] M. Herlihy. A methodology for implementing highly concur-
rent data structures. In Proceedings of the 2nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), Seattle, WA, USA, 1990.

[16] M. Herlihy and J. E. B. Moss. Transactional memory: Ar-
chitectural support for lock-free data structures. In Proceed-
ings of the International Symposium on Computer Architec-
ture (ISCA), San Diego, CA, USA, May 1993.

[17] Intel. Draft Specification of Transactional Language Con-
structs for C++. Intel, IBM, Sun, 1.0 edition, Aug. 2009.

[18] Intel. Intel Transactional Memory Compiler and Runtime
Application Binary Interface. Intel, 1.0.1 edition, Nov. 2008.

[19] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen.
Hybrid transactional memory. In Proceedings of the 11th
ACM SIGPLAN symposium on Principles and practice of par-
allel programming (PPoPP), New York City, NY, USA, Mar.
2006.

[20] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceed-
ings of the International Symposium on Code Generation and
Optimization (CGO), Palo Alto, CA, USA, Mar. 2004.

[21] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased transac-
tional memory. In Proceedings of the 2nd ACM SIGPLAN
Workshop on Transactional Computing (TRANSACT), Port-
land, OR, USA, Aug. 2007.

[22] S. Lie. Hardware support for unbounded transactional mem-
ory. Master’s thesis, May 2004. Massachusetts Institute of
Technology.

[23] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bron-
son, J. Casper, C. Kozyrakis, and K. Olukotun. An effec-
tive hybrid transactional memory system with strong isolation
guarantees. SIGARCH Comput. Archit. News, 35(2), 2007.

[24] J. E. B. Moss and A. L. Hosking. Nested transactional mem-
ory: model and architecture sketches. Sci. Comput. Program.,
63(2), 2006. ISSN 0167-6423.

[25] R. Rajwar and J. R. Goodman. Speculative lock elision: en-
abling highly concurrent multithreaded execution. In Pro-
ceedings of the 34th ACM/IEEE International Symposium on
Microarchitecture (MICRO), Austin, TX, USA, Dec. 2001.

[26] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In Proceedings of the 32nd Annual International
Symposium on Computer Architecture (ISCA), Washington,
DC, USA, 2005.

[27] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh,
and B. Hertzberg. McRT-STM: a high performance software
transactional memory system for a multi-core runtime. In Pro-
ceedings of the 11th ACM SIGPLAN symposium on Principles
and practice of parallel programming (PPoPP), New York,
NY, USA, Mar. 2006.

[28] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural
support for software transactional memory. In Proceedings
of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Washington, DC, USA, 2006.

[29] A. Shriraman, M. F. Spear, H. Hossain, V. Marathe,
S. Dwarkadas, and M. L. Scott. An integrated hardware-
software approach to flexible transactional memory. In Pro-
ceedings of the 34th annual international symposium on Com-
puter architecture (ISCA), San Diego, CA, USA, 2007.

[30] T. Skare and C. Kozyrakis. Early release: Friend or foe? In
Workshop on Transactional Memory Workloads. Jun 2006.

[31] L. Yen, J. Bobba, M. M. Marty, K. E. Moore, H. Volos,
M. D. Hill, M. M. Swift, and D. A. Wood. LogTM-SE:
Decoupling hardware transactional memory from caches. In
Proceedings of the 13th IEEE International Symposium on
High Performance Computer Architecture (HPCA). Phoenix,
AR, USA, 2007.

[32] M. T. Yourst. PTLsim: A cycle accurate full system x86-
64 microarchitectural simulator. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), Apr. 2007.

40

	1 Introduction
	2 Advanced Synchronization Facility (ASF)
	2.1 ASF rationale
	2.2 ASF specification
	2.3 ASF implementation variants

	3 Integrating ASF with transactional C/C++
	3.1 Dresden TM Compiler
	3.2 ASF-TM
	3.3 Safely executing nonspeculative code
	3.4 Lessons learned

	4 ASF simulator
	5 Evaluation
	6 Related work
	7 Conclusion

