
Fingerprinting the Datacenter:
Automated Classification of Performance Crises

Peter Bodı́k

EECS Department

UC Berkeley

Berkeley, CA, USA

bodikp@cs.berkeley.edu

Moises Goldszmidt

Microsoft Research

Mountain View, CA, USA

moises@microsoft.com

Armando Fox

EECS Department

UC Berkeley

Berkeley, CA, USA

fox@cs.berkeley.edu

Dawn B. Woodard

Cornell University

Ithaca, NY, USA

woodard@cornell.edu

Hans Andersen

Microsoft

Redmond, WA, USA

hansande@microsoft.com

Abstract
Contemporary datacenters comprise hundreds or thousands

of machines running applications requiring high availability

and responsiveness. Although a performance crisis is easily

detected by monitoring key end-to-end performance indica-

tors (KPIs) such as response latency or request throughput,

the variety of conditions that can lead to KPI degradation

makes it difficult to select appropriate recovery actions.

We propose and evaluate a methodology for automatic

classification and identification of crises, and in particular

for detecting whether a given crisis has been seen before, so

that a known solution may be immediately applied. Our ap-

proach is based on a new and efficient representation of the

datacenter’s state called a fingerprint, constructed by statis-

tical selection and summarization of the hundreds of perfor-

mance metrics typically collected on such systems. Our eval-

uation uses 4 months of trouble-ticket data from a produc-

tion datacenter with hundreds of machines running a 24x7

enterprise-class user-facing application. In experiments in a

realistic and rigorous operational setting, our approach pro-

vides operators the information necessary to initiate recov-

ery actions with 80% correctness in an average of 10 min-

utes, which is 50 minutes earlier than the deadline provided

to us by the operators. To the best of our knowledge this is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’10, April 13–16, 2010, Paris, France.
Copyright c© 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

the first rigorous evaluation of any such approach on a large-

scale production installation.

Categories and Subject Descriptors C.4 [Performance of
systems]: Reliability, availability, and serviceability

General Terms Performance

Keywords datacenters, performance, web applications

1. Introduction
A datacenter performance crisis occurs when availability or

responsiveness goals are compromised by inevitable hard-

ware and software problems [16]. The application operators’

highest priority is to stabilize the system and avoid crisis es-

calation; they typically do this by inspecting collected sys-

tem metrics (telemetry), logs, and alarms. We aim to provide

tools to automate problem identification, thereby speeding

stabilization. In particular, performance crises may recur be-

cause the bug fix for the underlying problem has not yet been

deployed, because the fix is based on a misunderstanding

of the root cause [3, 10], or because of emergent misbehav-

iors due to large scale and high utilization1. If operators can

quickly determine whether an emerging crisis is similar to

a previously-seen crisis, a known remedy may avoid escala-

tion and allow root-cause analysis to proceed offline.

Automatic identification of performance crises requires

mechanisms to capture these patterns and match them against

previous patterns in a database, effectively reducing prob-

lem identification to information retrieval. Earlier work [7]

showed that while this is possible, crisis identification suf-

fers if either too few or too many metrics are used to distin-

guish crises, or if the wrong subset of metrics is analyzed;

1 Jeff Dean, Google Fellow, keynote at LADIS 2009 workshop

111



and furthermore that the size and membership of this ideal

subset depends on which crises have already been seen. Al-

though the authors’ findings were encouraging, the method

was evaluated on modest workloads running on few servers

and using generous criteria for identification accuracy. In

reality, today’s applications run on hundreds up to tens of

thousands of machines in a datacenter, and since the goal

of problem identification is to provide actionable informa-

tion for initiating recovery, the evaluation criteria should be

stringent.

In this paper we present a methodology for automating

the identification of performance crises. By identification

we mean that if a crisis has been previously seen (using

operator-supplied labels as the initial ground truth) it is so

labeled; otherwise it is labeled as “new type of crisis.” Our

main contribution is a methodology for constructing a dat-

acenter fingerprint, a digest of the datacenter metrics that

summarizes datacenter state both across servers in the dat-

acenter and over time. We show that our fingerprints iden-

tify and distinguish performance crises with higher accuracy

than approaches using all available metrics, approaches us-

ing human-selected key performance indicators, and the ap-

proach taken by the most closely related work [7] using a

different statistical selection method. Our fingerprint repre-

sentation can be computed efficiently and scales to very large

clusters with hundreds of performance metrics per server.

We use a rigorous methodology and stringent accuracy

criteria to validate the approach on four months of data from

a production datacenter. Our results clearly establish that:

1. When used in a fully-operational setting, our approach

achieves identification accuracy of 80% and, on average,

identifies the crises ten minutes after they were detected.

In contrast, the operators of the datacenter have informed

us that automatic identification is still useful up to one

hour after a crisis begins, so in 80% of the cases our

approach could have reduced the crisis duration by as

much as 50 minutes.

2. The subset of metrics automatically selected and summa-

rized by our approach identifies crises better than com-

peting approaches representative of both current industry

practice and the most recent literature.

3. The discriminative power of our approach is nearly op-

timal, as demonstrated by experiments in which we re-

move the need to update various parameters in an online

fashion as each new crisis is seen. These experiments val-

idate that a fingerprint based on collected performance

metrics is an effective and compact representation of the

datacenter state.

4. Our approach clearly quantifies tradeoffs among false

positives, accuracy of identification, and time to identi-

fication.

To the best of our knowledge, this is the first time such

an approach has been applied to a large-scale production

installation with rigorous validation using hand-labeled data.

2. Related Work
In a typical datacenter today, when an application starts

experiencing a performance anomaly (e.g. high request la-

tency), an alarm automatically alerts the on-call operator [3].

The operator begins manual investigation using log files,

graphs, and other information. It is not unusual for prob-

lem identification to take an hour or more, after which the

operator can begin corrective action.

We envision that by the time the operator responds to the

alarm, she might already have a message in her inbox: “The

current crisis is similar to a crisis that occurred two weeks

ago. In the former crisis, redirecting traffic to a different

datacenter resolved the problem.” If the determination of

similarity were correct, the operator could avoid tens of

minutes of downtime by initiating the same recovery action.

As early as 2003, the authors of [18] proposed the use

of compute-intensive modeling techniques to perform such

automatic recognition. Since then, researchers have tried

to identify operational problems by analyzing performance

metrics using machine learning [4, 6, 7, 9, 17, 23, 25], by

identifying unusual or noteworthy sequences of events that

might be indicators of unexpected behavior [5, 19], and by

manually instrumenting the system [2] and creating libraries

of possible faults and their consequences [21]. Others have

laid out general methodological challenges in using comput-

ers to diagnose computer problems [8, 11].

By far the work closest in spirit to our own is the “sig-

natures” approach to identifying and retrieving the essen-

tial system state corresponding to previously-seen crises [7].

The authors propose a methodology for constructing “sig-

natures” of server performance problems by first using ma-

chine learning techniques to identify the performance met-

rics most relevant to a particular crisis; second, using the

induced models for online identification; and third, relying

on similarity search to recognize a previously recorded in-

stance of a particular incident. They showed their approach

to be successful in a small transactional system on a handful

of performance problems.

We view our methodology as a direct descendant of the

“signatures” approach but with important differences that

lead to several crucial improvements. The approach in this

paper is based on treating the problem as an online clus-

tering based on the behavior of the metrics during a cri-

sis. This leads to a generative model where the differences

in the crises are captured by the behavior of the collected

metrics. The signatures approach is based on maintaining

multiple models (one per crisis), which are then managed

by computing a fitness score to decide which of the mod-

els are likely to provide the best identification of the cur-

rent crisis. The selected models are then used to construct

112



the signature of (and thereby identify) the crisis. As our re-

sults in Section 5 demonstrate, these differences lead to a

substantial improvement in accuracy. In addition, there are

other advantages. First, our fingerprint representation size

scales linearly, rather than exponentially, with the number

of metrics considered. Second, the representation size is in-

dependent of the number of machines and thus can be used

with very large deployments. Third, the simplification in our

approach of a single model allows our approach to avoid

two related sources of potential error and their correspond-

ing free parameters. First, we need no policies to maintain

and ensure the validity of multiple models. Second, since

we don’t maintain multiple models, we need neither a fit-

ness score to determine which models to apply nor a method

to combine the output of multiple models.

HiLighter [4] showed that the use of regularized logistic

regression [22] as a classifier results in a metric selection

process that is more robust to noise than the naı̈ve Bayes

classifier used in the signatures approach. In particular, Hi-

Lighter avoids the wrap-around search for the relevant fea-

tures for each model as was done in the signatures work.

We take the same approach to relying on regularized logis-

tic regression for selecting the set of relevant metrics. How-

ever, like signatures, HiLighter must deal with the problems

of model management and online selection, and proposes a

representation of performance state that can grow exponen-

tially with the number of metrics being recorded. Both these

problems are resolved in the fingerprinting approach we pro-

pose.

3. Problem and Approach
A typical datacenter-scale user-facing application runs si-

multaneously on hundreds or thousands of machines. In or-

der to detect performance problems and perform postmortem

analysis after such problems, several performance metrics
are usually collected on each machine and logged to online

or nearline storage. Since large collections of servers execute

the same code, under normal load balancing conditions the

values of these metrics should come from the same distri-

bution; as we will show, we use this intuition to capture the

state of each metric and identify unusual behavior.

Each metric is usually measured once per aggregation

epoch—typically a few minutes—and the measured val-

ues may represent a simple aggregate over the aggregation

epoch, e.g. the mean. The metrics correspond to hardware,

OS, application, or runtime-level measurements, such as the

size of the object heap or number of threads waiting in the

run queue. Wide variation exists in what is collected and at

what granularity; packages such as HP OpenView [1], Gan-

glia [15], and others provide off-the-shelf starting points.

A small subset of the collected metrics may be key perfor-
mance indicators (KPI’s) whose values form part of the def-

inition of a contractual service-level objective (SLO) for the

application. An SLO typically specifies a threshold value for

each KPI and the minimum fraction of machines that have

to satisfy the requirement over a particular time interval. For

example, an SLO might require that the end-to-end inter-

active response time be below a certain threshold value for

99.9% of all requests in any 15-minute interval.

A performance crisis is defined as a prolonged violation

of one or more specified SLO’s. Recovery from the crisis

involves taking the necessary actions to return the system

to an SLO-compliant state. If the operators can recognize

that the crisis is of a previously-seen type, a known remedy

can be applied, reducing overall recovery time. Conversely,

if the operators can quickly determine that the crisis does

not correspond to any previously seen incident, they can

immediately focus on diagnosis and resolution steps, and

record the result in case a similar crisis recurs.

Our goal is to automate the crisis identification process by

capturing and concisely summarizing the subset of the col-

lected metrics that best discriminate among different crises.

We next describe our process for doing this, called finger-
printing the datacenter, and how we define a similarity met-

ric between two fingerprints to identify recurring problems.

3.1 Fingerprint-based recognition
A fingerprint is a vector representing the performance state

of a datacenter application that uniquely identifies a perfor-

mance crisis. It is based on values of performance metrics

and, intuitively, it characterizes which metrics’ values have

significantly increased or decreased on a large fraction of the

application servers. There are four steps to our fingerprint-

based recognition and identification technique.

1. We summarize the values of each performance metric in

a particular epoch across all the application servers by

computing the quantiles of the measured values (such

as the median of CPU utilization on all servers). Unlike

statistics such as the mean, quantiles are more robust to

outliers in the distribution of the metric values. As we

discuss in Section 3.2, this summarization scales well

with the number of servers.

2. Based on the past values of each metric quantile, we

characterize its current value as hot, cold, or normal,
representing abnormally high, abnormally low, or normal

value, respectively. We discuss this step and the choice

of hot and cold thresholds in Section 3.2. This gives us

a summary vector containing one element per quantile

per tracked metric, indicating whether the value of that

quantile is cold, normal, or hot during that epoch.

3. We identify the relevant metrics whose quantile behavior

distinguishes normal performance from the performance

crises defined by the SLO’s. The metric selection process

is described in Section 3.3. This subset of the summary

vector for a given epoch is the epoch fingerprint.

4. Since most crises span multiple epochs, we show how

to combine consecutive epoch fingerprints into a crisis

113



metric 1 on all servers

metric N on all servers

raw metrics on all servers median
median

+ hot/cold thresholds

1

0

summary vector

metric 2 on all servers

-1

metric 1

metric 2

metric N

Figure 1. The summary vector of a particular epoch is created in

two steps. First, the values of each metric are summarized using one

or more quantiles (here we use the median). Second, each metric

quantile is discretized into a hot, normal, or cold state based on its

hot/cold thresholds (represented by the arrows). Each square in the

summary vector represents the state of a particular metric quantile,

with −1, 0, 1 corresponding to cold, normal, hot respectively.

fingerprint. We define a similarity metric for determining

whether two crisis fingerprints correspond to the same

underlying problem. These two steps are described in

Section 3.4.

5. Finally, we observe that in a real operational setting,

crises appear sequentially and identification of a crisis

can be based only on information obtained from the pre-

vious crises. We hypothesize that crisis identification will

be improved through adaptation — updating identifica-

tion parameters each time a correctly-labeled crisis is

added to the dataset. The adaptation procedure is de-

scribed in section 3.5.

3.2 Hot and Cold Metric Quantiles
In the first step, we compactly represent the values of each

metric on all servers during a particular epoch. Because

servers of the same application typically run the same code,

we can view the measured values of the same metric as sam-

ples of a random variable whose distribution is unknown.

We thus summarize the metric values across all servers us-

ing several quantiles of the observed empirical cumulative

distribution over an epoch (see an illustration in Figure 1 on

using the median of the metrics). In this paper we refer to

these quantiles as metric quantiles.

We use quantiles instead of other statistics such as mean

and variance because quantiles are less susceptible to out-

liers. This summarization of the state of the metrics does

not grow as the number of machines increases, so the size

of the fingerprint is only proportional to the number of met-

rics being collected. In addition, there are well known al-

gorithms for estimating quantiles with bounded error using

online sampling [12], which guarantee that the entries in the

fingerprints can be computed efficiently. In our case study,

which involved several hundred machines, we computed the

values of the quantiles exactly.

Figure 2. From top to bottom, fingerprints of crises B, B, C and

D from Table 1. Each row is an epoch and each column represents

the state of a particular metric quantile, with white, gray, black

corresponding to cold, normal, hot (−1, 0, +1) respectively in the

fingerprint. The fingerprints are composed of 11 metrics, where

each three adjacent columns represent three quantiles (25th, 50th,

and 95th). Notice that the patterns of metric quantiles in crises B

are very similar, while very different from crises C and D.

We observe that the main factor that differentiates be-

tween different types of crises are the different metric quan-

tiles that take extreme values during the crisis. In other

words, compared to values of a metric quantile during nor-

mal periods with no crises, the values observed during a cri-

sis are either too high or too low.2 Our objective is to cap-

ture this fact in the fingerprint, that is, to encode which met-

ric quantiles increased or decreased significantly on a large

number of servers during the crisis. We achieve this by dis-

cretizing the value of each metric quantile to one of three

states: extremely high (hot), extremely low (cold), or nor-
mal relative to its past values. For example, if the median

of a metric is hot, the most recent value for that quantile is

higher than normal.

2 Because the number of occurrences of each crisis type is relatively low,

we cannot build a robust model of metric quantiles during a crisis.

114



The computation of hot and cold thresholds is parame-

terized by hyperparameter p – percentage of past values of

a metric quantile that are considered extremely low or high

during normal system operation. The cold threshold of a par-

ticular metric quantile m (such as median of CPU utiliza-

tion) is computed as the p/2th percentile of values of m in

the past W days that exclude epochs with SLO violations.

The hot threshold of m is computed as (100 − p/2)th per-

centile over the same period. For example, for p = 4% we

use the 2nd and 98th percentiles. In Sections 5 and 6.1 we dis-

cuss the choice of quantiles, hyperparameters p and W and

examine the sensitivity of our approach to their values.

We can now build a summary vector for one epoch: it is a

vector of Q×M elements, where M is the number of metrics

and each group of Q elements corresponds to the metric

quantiles of individual metrics. An element’s value is −1
if the quantile’s value is below the cold threshold during the

epoch, +1 if the quantile’s value is above the hot threshold,

and 0 otherwise (see Figure 1).

3.3 Selecting the Relevant Metrics
As we will show in our experiments (Section 5.1), achieving

robust discrimination and high identification accuracy re-

quires selecting a subset of the metrics, namely the relevant
metrics for building the fingerprints. We determine which

metrics are relevant in two steps. We first select metrics that

correlate well with the occurrence of each individual crisis

by borrowing techniques from machine learning, specifically

feature selection and classification on data surrounding each

crisis. Second, we use metrics most frequently selected in

the previous step as the relevant metrics used for building all

fingerprints. The summary vector is converted into an epoch
fingerprint by selecting only the relevant metrics.

Feature selection and classification is a technique from

statistical machine learning that first induces a function be-

tween a set of features (the metrics in our case) and a class

(crisis or no crisis) and tries to find a small subset of the

available features that yields an accurate function. Let Xm,t

be the vector of metrics collected on machine m at time t
and Ym,t be 1 if m violated an SLO at time t, or 0 otherwise.

A classifier is a function that predicts the performance state

of a machine, Y , given the collected metrics X as input. The

feature selection component picks a subset of X that still

renders this prediction accurate. In our approach we use lo-

gistic regression with L1 regularization (see Appendix A.1

and [22]) as the statistical machine learning method. The

idea behind regularized logistic regression is to augment the

model fitting to minimize both the prediction error and the

sum of the model coefficients. This in turn forces irrelevant

parameters to go to zero, effectively performing feature se-

lection. It has been (empirically) shown in various settings

that this method is effective even in cases where the number

of samples is comparable to the number of parameters in the

original model [13], as is the case in our scenario in which

the number of possible features (over 100 per server for sev-

eral hundred servers) exceeds the number of classification

samples. Note that the crises do not need to be labeled when

performing the metric selection, so there is no burden on the

operator; this step is completely automated.

3.4 Matching Similar Crises
In the final step we summarize epoch fingerprints during a

single crisis into a crisis fingerprint and compare crisis fin-

gerprints using a distance metric. First, because crises usu-

ally last for more than one epoch, we create a crisis finger-

print by averaging the corresponding epoch fingerprints, thus

summarizing them across time. For example, Figure 2 shows

epoch fingerprints of four crises. Each row represents an

epoch, each column represents a metric quantile, and white,

gray, and black represent the values −1, 0, and 1, respec-

tively of the cold, normal, and hot state respectively. The

three left-most columns of the third crisis from the top in the

figure would be summarized as {−7
12 , −4

12 , 6
12}; there are 12

epochs in the crisis and the column sums are −7, −4, and 6.

Different types of crises manifest themselves differently in

the fingerprints. In the case of crisis of type B, “overloaded

back-end” (see Table 1), different processing queues, work-

load, and CPU utilization are abnormally high. In contrast, in

crisis of type D, “configuration error 1”, most of the work-

load and CPU utilization metrics are normal, yet some of

the internal queues are abnormally low. Notice also that the

quantiles often don’t move in the same direction—for exam-

ple, see the left-most three columns in the third crisis from

the top in Figure 2—which is important for identification.

If the Euclidean distance between the fingerprints of a

pair of crises is less than the identification threshold T , the

crises are considered identical, otherwise they are different.

Intuitively, if T is too low, some identical crises would be

classified as different (false negative), while if T is too high,

different crises would be classified as identical (false posi-

tive). We define the false positive rate α as the number of

pairs of different crises that are incorrectly classified as iden-

tical divided by the number of pairs of crises that are differ-

ent. We ask the operator to specify an acceptable bound on

α, and we set T to the maximum identification threshold that

respects that bound. A ROC (Receiver Operating Character-

istic, see Appendix A.2) curve, such as the one in Figure 5,

is particularly useful for visualizing this. In our experiments,

we set α close to zero, essentially guaranteeing no false pos-

itives in practice. We illustrate the effects of increasing α on

the identification process in Figure 6.

In the methodology above we assume that the operator

is able to correctly label a crisis after its resolution, as the

threshold T may then need to be adjusted to maintain the

desired rate of false positives. If a significant number of

past crises cannot be reliably labeled, we instead pose cri-

sis matching as an unsupervised online clustering problem.

Such an approach requires more sophisticated probabilis-

tic models and computational statistical inference; we report

early results on this aspect of the problem in Section 6.2.

115



3.5 Adaptation
Once a new crisis is resolved and an operator correctly

labels it, we update the fingerprinting parameters: hot and

cold thresholds, set of relevant metrics, and identification

threshold T . First, we update the hot and cold thresholds

based on values of metric quantiles in the past W days

as described in Section 3.2. Second, we select the most

frequent metrics from the most recent C crises as described

in Section 3.3. Third, we update the identification threshold

T based on all the past labeled crises to achieve expected

false positive rate of α. Finally, fingerprints of the past crises

are recalculated based on the new fingerprinting parameters.

4. Evaluation
Using the ground truth labels provided by human opera-

tors of a production system described in Section 4.1, we

evaluate our approach and compare it to three alternatives:

a) one that relies only on the operator-identified Key Per-

formance Indicators (KPI’s) for crisis identification, b) one

that uses all available metrics for identification, and c) one

that models crises using the signatures approach described

in [7]. Our evaluation consists of three parts. First, we eval-

uate the discriminative power of our approach and compare

it to the other approaches, using the entire available dataset.

That is, we quantify how accurately each approach classi-

fies two crises as identical or not. This part of the evaluation,

described in Section 4.2, establishes an upper bound on iden-

tification accuracy for all approaches.3

Next, we simulate the operational setting in which our

approach is designed to be used, in which crises appear se-

quentially and identification of a crisis is based only on in-

formation obtained from the previous crises. In these ex-

periments we use adaptation described in Section 3.5. Sec-

tion 4.3 describes how we evaluate the accuracy and time-

to-identification of our technique and quantify the loss of

accuracy resulting from the use of only partial information.

Finally, in Section 4.4 we compare our approach to the

others, again in an operational setting. However, since each

approach uses different techniques for adaptation, to make

the comparison meaningful we remove the need for adapta-

tion by providing access to the entire dataset for training. We

refer to this as operational setting with an oracle.

4.1 System Under Study
We evaluate our approach on data from a commercial dat-

acenter running a 24×7 enterprise-class user-facing appli-

cation. It is one of four datacenters worldwide running this

application, each containing hundreds of machines, serv-

ing several thousand enterprise customers, and processing

a few billion transactions per day.4 Most machines execute

3 We also conducted experiments on synthetic data in [20] – some results of

these experiments are briefly mentioned in Appendix B.
4 The exact numbers are considered confidential by the company that oper-

ates the datacenter.

front-end
processing

heavy
processing

post
processing

post
processing

post
processing

Figure 3. Processing on machines in the datacenter under study.

the same application, as depicted in Figure 3. The incom-

ing workload is processed on the machine in three stages:

light processing in the front-end, core of the execution in the

second stage, followed by some back-end processing. The

requests are then distributed to the clients or to another dat-

acenter for archival and further processing. We have no vis-

ibility to the clients or to machines in the other datacenters.

For each server, we measure about 100 metrics each av-

eraged over a period of 15 minutes. The 15-minute averag-

ing window is established practice in this datacenter, and we

had no choice on this matter; similarly, we have no access

to any other performance counters or to information allow-

ing us to reconstruct the actual path of each job through

the server. The metrics include counts of alerts set up by

the operators, queue lengths, latencies on intermediate pro-

cessing steps, summaries of CPU utilization, and various

application-specific metrics.

The operators of the site designate three key performance
indicators (KPI’s) corresponding to the average processing

time in the front end, the second stage, and one of the post-

processing stages. Each KPI has an associated service-level

objective (SLO) threshold determined as a matter of business

policy. A performance crisis is declared when 10% of the

machines violate any KPI SLO’s. This definition is set by

the operators and we did not tamper with it.

We use four months of production data from January

to April 2008. During this period, the datacenter operators

manually diagnosed and labeled 19 crises, ranging from con-

figuration problems to unexpected workloads to backlogs

caused by a connection to another datacenter. These crises

were labeled after an exhaustive investigation according to

the determined underlying cause. Attached to the labels are

logs providing details about the investigation, and most im-

portantly, the set of remedial actions taken and their effec-

tiveness. The value of the technique we propose in this paper,

is to accurately identify future crises, so that the appropriate

information about remedial actions can be readily retrieved

and used.5 In Table 1 we provide descriptive labels of the

crises and the number of times each type occurred during

the period of study. The labels we provide are not the actual

ones attached to the operators report; for obvious reasons we

are not able to publish these. Yet, as explained above the ac-

5 Note that issues such as the granularity of the diagnosis and the appropri-

ate mapping to the set of available remedial actions are outside the scope of

the fingerprinting technique.

116



ID # of instances label

A 2 overloaded front-end

B 9 overloaded back-end

C 1 database configuration error

D 1 configuration error 1

E 1 configuration error 2

F 1 performance issue

G 1 middle-tier issue

H 1 request routing error

I 1 whole DC turned off and on

J 1 workload spike

Table 1. List of identified performance crises. Names are indica-

tive of the root cause. We stress that almost all these crises mani-

fested themselves through multiple metrics, and that there is over-

lap between the metrics of the different crises.

tual label is irrelevant to the fingerprinting technique and has

no relevance on the results. Still, the labels in Table 1 give a

sense of the wide range of problems that are under study and

that can be successfully identified with the techniques pro-

posed in this paper. We also had access to collected metrics

and 20 unlabeled crises that occurred between September

and December 2007 that we use to simulate online deploy-

ment, but not to evaluate identification accuracy.

4.2 Evaluating Discrimination
Discrimination measures how accurately a particular crisis

representation classifies two crises as the same or distinct.

We compare our method to three other approaches, in each

case using the entire dataset so as to give each method the

maximum information possible. This establishes the base-

line ability to capture the differences between different crises

for each method. As is standard, we compare the different

approaches using ROC curves [14] that represent the trade-

off between the false positive rate (incorrectly classifying

two different crises as identical) and recall (correctly classi-

fying two identical crises) over the whole range of the iden-

tification threshold T (see Appendix A.2 for more detailed

explanation). It is standard practice to represent this com-

parison numerically by computing the area under the curve

(AUC). The optimal approach will have an AUC of 1, indi-

cating that there is no tradeoff between detection and false

positives. By using an ROC curve for comparison, we take

into account all possible cost-based scenarios in terms of the

tradeoff between missing identical crises versus considering

different crises to be identical.

4.3 Evaluating Identification Accuracy and Stability
Identification accuracy measures how accurately our ap-

proach labels the crises. A human operator has hand-labeled

each crisis in our dataset, but in an operational setting the

crises are observed sequentially. Each crisis is labeled un-
known if the distance between its fingerprint and all finger-

prints of past crises is greater than the identification thresh-

Problem identification workflow
When a crisis is detected based on KPIs:

update hot/cold thresholds (Section 3.2)

update past crises’ fingerprint entries (3.1)

During first K epochs of crisis (we use K = 5, see Sec. 4.3):

update crisis fingerprint with new data (3.1)

find most similar past crisis P (3.4)

if similarity within identification threshold (3.5)

emit label P , else emit label X
When crisis is over:

operators verify label of crisis

update set of relevant metrics (3.3)

update identification threshold T (3.5)

Figure 4. Problem identification workflow. Each line refers

to a section that describes that step in detail.

old T ; otherwise it is labeled as being identical to the closest

crisis. Since many crises (indeed, all those in our dataset)

last longer than a single 15-minute epoch, we must also de-

fine identification stability—the likelihood that once our ap-

proach has labeled a crisis as known, it will not change the

label later while the crisis is still in progress. In each epoch,

the identification algorithm emits either the label of a known

crisis, or the label x for unknown. A sequence of K iden-

tifications is stable if it consists of n ≥ 0 consecutive x’s

followed K −n consecutive identical labels. Since the oper-

ators of this application informed us that identification infor-

mation is useful up to one hour into a crisis, we use K = 5.

For example, if A and B are labels of known crises, the se-

quences xxAAA, BBBBB, and xxxxx are all stable, whereas

xxAxA. xxAAB, AAAAB are all unstable. Given this stability

criterion, a sequence is accurate if it is stable and the la-

beling is correct; that is, either all labels are x’s and the cri-

sis is indeed new, or the unique non-x label matches that of

a previously-seen crisis that is identical to the current cri-

sis. Further, for a previously-seen crisis we can define time
to identification as the first epoch after crisis onset during

which the (correct) non-x label is emitted.

We emphasize that from the point of view of Recovery-

Oriented Computing [16], stability is essential because the

system operator’s goal is to initiate appropriate recovery ac-

tions as soon as possible once the crisis has been identified.

Unstable identification could lead the operator to initiate

one set of actions only to have the identification procedure

“change its mind” later and apply a different label to the cri-

sis, which would have implied different recovery operations.

There is an inherent tradeoff between time to identification

and stability of identification; we quantify this tradeoff in

Section 5 and show how a system operator can control the

tradeoff by setting a single parameter in our algorithm.

117



4.4 Comparing to Other Approaches
When comparing our identification accuracy to that of other

approaches, to make the comparison meaningful we elimi-
nate the adaptation described in Section 3.5 from both our

approach and those we compare against. With adaptation in

place, any comparison would also have to compare the rel-

ative loss of accuracy of each method when only partial in-

formation is used to make decisions. Instead of adaptation,

we use an oracle to set the best parameters for each method,

allowing us to show each approach at its best.

To remove adaptation from the fingerprinting approach,

we compute the identification threshold T based on an ROC

curve over all labeled data, we select a single set of relevant

metrics using models induced on the labelled crises, and we

compute hot and cold thresholds based on the whole dataset.

We use this set of parameters throughout the experiment.

To explain how we remove adaptation from the signa-

tures approach in [7], we first briefly review the adaptation it

usually performs. The signatures approach builds a classifier

for each crisis that tries to predict whether the current sys-

tem state will result in an SLO violation on the KPIs. The

SLO state serves as ground truth for the classifier, and the

signature captures the subset of metrics that form the fea-

tures used by the classifier that achieves the highest accu-

racy. Crisis recognition consists of first selecting a subset of

the models with highest prediction accuracy on the current

crisis, and then building a signature based on the most rel-

evant metrics. This entire procedure requires setting many

parameters, including the number of epochs on which the

model is evaluated and the number of models being selected

(or a threshold on the Brier score for selection). Adaptation

consists of periodically merging similar models and deleting

inactive/obsolete models [25]; these processes depend on ad-

ditional free parameters.

To remove adaptation from the signatures approach, we

allow it to always select the optimal model for each crisis.

This gives the signatures approach a model management

technique that is omniscient, clairvoyant, and optimal. In

addition, since our system consists of hundreds of servers

rather than the handful of servers used for evaluation in [7],

rather than assigning a model to each server we assign a

model to the datacenter and summarize the metrics using

quantiles. Finally, in place of the naive Bayes models used

in [7], we use logistic regression with L1 regularization for

feature selection; since the logistic regression models were

more accurate in our setting than those using naive Bayes,

this gives the signatures approach another advantage.

We point out that our criteria for accuracy are much more

stringent and more realistic than those used in [7]. In that

work, an identification was considered successful as long as

the actual crisis was among the k most similar crises selected

by the algorithm, according to a distance metric. In contrast,

our identification is successful if the single correct label is

produced, and in case the crisis is a previously-unseen crisis,

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

false positive rate

re
c
a
ll

fingerprints

signatures

fingerprints (all metrics)

KPIs

type of fingerprint AUC

fingerprints 0.994

fingerprints with all metrics 0.873

KPIs 0.854

signatures 0.876

Figure 5. ROC curves for crisis discrimination and the area under

the curves (AUC) for the fingerprinting and alternative approaches.

identification is successful only if it reports “unknown” and

does not assign the label of any known crisis. Furthermore,

the stability criterion, which is a prerequisite to accuracy in

our approach, has no analogue in [7].

4.5 Experimental Setup and Procedure
As the approach is intended to be used in an “online” op-

erational setting in which crises occur sequentially and they

must be identified as soon as possible, we simulate this set-

ting in our experiments. That is to say, at the point the cri-

sis is detected through an SLO violation, the system exe-

cutes the operations indicated in Figure 4 in order to de-

cide whether the crisis has occurred before. Since the hot

and cold thresholds represent a range of values of a metric

quantile during time intervals without SLO violations, they

are updated when a crisis is detected so as to incorporate

the most recent metric values. Since the fingerprints of past

crises are determined by these thresholds, we also update

the fingerprints. After each crisis, we automatically update

the set of relevant metrics and the identification threshold

T as described in previous sections. We note that the final

verification of the crisis label is performed offline and may

require several iterations and different tier level operators,

all of which are outside the scope of this paper.

5. Results
The main results reported in this section used the following

settings. The fingerprints where built using three quantiles

for each metrics; in addition to the median, we added the 25th

118



and 95th percentiles to capture the variance. In the selection

of the relevant metrics we used classifier models containing

ten metrics (the balanced accuracy was high enough and the

standard deviation in the cross-validation was low), and we

used the most frequent 30 metrics over the past 20 crises

as the relevant metrics for the fingerprints (see Section 3.3).

Finally we used a moving window of 240 days to set the

hot/cold thresholds using p = 4%. Section 6.1 describes

the sensitivity analysis and how to set these parameters in

a realistic setting.

5.1 Discriminative Power
As discussed in Section 4.2, we start our evaluation of the

fingerprint approach by examining its basic capabilities in

classifying two crises as the same or distinct, and compar-

ing this ability to alternative approaches. The graph in Fig-

ure 5 shows the ROC curves and AUC for each approach.6

The fingerprint approach exhibits an AUC of 0.994, which

means that in terms of discrimination, this approach is able

to maximize the detection rate with extremely few false pos-

itives. Comparing to the alternative approaches, using the

KPI’s alone gets an AUC of 0.854 and the approach using

all the metrics gets 0.874. Furthermore looking at the shape

of the curves it is clear that neither is able to discriminate

at the same level as the fingerprints. Using the KPIs simply

does not provide enough power to discriminate between the

different types, and using all the metrics simply obfuscates

the discriminative signal by introducing noise.7 Finally, the

signatures approach performs better than both these two ap-

proaches but still well bellow the fingerprinting approach

proposed in this paper.

5.2 Fully operational setting
In the following experiments we simulate the conditions

under which the approach would be used for identification

of crises in an operational setting where crises arrive one

at a time and we update fingerprinting parameters as we

observe them. To remove dependencies on a particular order

we perform experiments using 20 random permutations of

the crises, one of which is the actual chronological order,

and report the average accuracy across all runs.

At the onset of a new crisis, we perform the following: a)

update relevant metrics, hot/cold thresholds, and identifica-

tion threshold T as described in Section 3.5, b) update fin-

gerprints of past crises, c) perform identification using the

distances between crises and the identification threshold.

Recall from Section 4.3 that a new crisis C is said to be

identified accurately if the identification is stable over five

epochs and if the label is correct. If C is previously known

(i.e. if the set of crises that occurred in the past contains

some crisis identical to C), the correct label would be that

6 See Appendix A.2 for a detailed explanation.
7 Metrics that are not correlated with the crises may take extreme values

during both crises and “normal” intervals.

operational setting known acc. unknown acc.

oracle 98% 93%

adaptation, bootstrap w/ 10 77% 82%

adaptation, bootstrap w/ 5 76% 83%

adaptation, bootstrap w/ 2 78% 74%

Table 2. Summary of the results for different settings.

of the previously seen crisis. If the past set of crises con-

tains no crisis identical to C, the correct label would be un-
known. We compute the known accuracy (fraction of correct

identifications for previously seen crises), the unknown ac-
curacy (fraction of correct identifications for previously un-

seen crises), and also the time to identification (the average

time between crisis detection and its correct identification).

To evaluate the performance of our method with adap-

tation, we run three sets of experiments, each time starting

with a different number of labeled crises. When starting with

two labeled crises, we achieve known and unknown accuracy

of 78% and 74%8. Starting with five and ten crises yields ac-

curacies of approximately 76% and 83% (see Table 2 and

Figure 6).

Besides accuracy, the time at which the method makes a

decision regarding the identity of the crisis is important to

the operator. The dependency among these three evaluation

metrics is made clear in Figure 6. We note that our method is

able to make the identification with 80% accuracy within ten

minutes of crisis detection, even in a fully operational set-

ting where the relevant metrics and identification threshold

are adapted in an online fashion. Operators of this web ap-

plication mentioned that correct identification is useful even

one hour after the crisis was detected.

5.3 Operational setting with an oracle
To compare our approach to the three alternative approaches,

we eliminate the adaptation as described in Section 4.4.

Instead, each method uses the best settings of its parameters

based on the whole dataset as if provided by an oracle. These

parameters are not updated as new crises arrive. Note that in

contrast to the fully operational setting, in this setting it does

not make sense to compare approaches in terms of average

time to identification. As we are providing the optimal model

for the signatures approach, this approach will not change its

decision even when given more information about the crises

as it unfolds. In practice, this technique may change its initial

assessment of the crises while it manages and evaluates the

ensemble of models [25], yet when we provide the optimal

model we are sidestepping this issue.9

For each of the approaches we executed five runs with

different initial set of crises and performed identification

8 We report accuracies for α = 0.001 – conservative value that guarantees

almost no false positives
9 We emphasize that this actually favors the evaluation of the signature

technique, as it is not guaranteed that the ensemble of models will find that

optimal model.

119



0.001 0.005 0.020 0.050 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

30 metrics, 240 days, bootstrap with 10 crises

alpha (log scale)

ac
cu

ra
cy

/s
ta

bi
lit

y

known accuracy
unknown accuracy
average identification time

av
g.

 id
en

tif
ic

at
io

n 
tim

e 
[m

in
]

0
5

10
15

0.001 0.005 0.020 0.050 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

30 metrics, 240 days, bootstrap with 2 crises

alpha (log scale)

ac
cu

ra
cy

/s
ta

bi
lit

y

known accuracy
unknown accuracy
average identification time

av
g.

 id
en

tif
ic

at
io

n 
tim

e 
[m

in
]

0
5

10
15

Figure 6. Known accuracy, unknown accuracy, and time of identification results in full operational setting when using 30 metrics in

fingerprints, 240 days of moving window, and bootstrapping with ten and two labeled crises (top). X-axes represents different values of the

false positive rate parameter specified by the operator.

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fingerprints with oracle

alpha (log scale)

ac
cu

ra
cy

known accuracy
unknown accuracy

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

signatures

alpha (log scale)

ac
cu

ra
cy

known accuracy
unknown accuracy

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fingerprints with oracle (all metrics)

alpha (log scale)

ac
cu

ra
cy

known accuracy
unknown accuracy

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

KPIs

alpha (log scale)

ac
cu

ra
cy

known accuracy
unknown accuracy

Figure 7. Known accuracy, unknown accuracy, and time of identification for different crisis signatures when using an oracle: fingerprints

(top left), signatures [7] (top right), fingerprints using all the available metrics (bottom left), and KPIs (bottom right). X-axes represents

different values of the false positive rate parameter specified by the operator.

on the remaining 14 crises. The initial set of crises always

contained two crises of type “B”, one of type “A”, and two

other crises that varied between runs. Because crises “A” and

“B” are the only ones that repeat, we use them in each initial

set to estimate the identification accuracy of known crises.

We report the average of all the evaluation metrics across

the five runs in Figure 7.

Fingerprinting achieves very high known and unknown

accuracies of 97.5% and 93.3%. The approaches based on

using all the metrics and the KPIs achieve accuracies of 50%

and 55% respectively. The signatures approach [7] performs

better than the baselines and achieves accuracies of 75% and

80%, but still worse than fingerprinting.

120



5.4 Summary of empirical results
From the discrimination and identification experiments, we

conclude that:

1. Maintaining only the relevant metrics for distinguishing

crises from normal operation allows the fingerprinting

approach to attain much higher identification accuracy.

2. The KPI’s alone provide insufficient information to dis-

tinguish or identify different types of crises.

3. The fingerprinting approach, based on keeping concise

representations of the datacenter state, performs signifi-

cantly better than the signatures approach of [7].

4. In the realistic, fully operational setting, we correctly

identify 80% of the crises with an average time between

crisis detection and its identification of ten minutes.

6. Fingerprinting in Practice
As with any approach based on collecting and analyzing

data, applying the approach in an operational setting requires

setting some parameters and understanding the sensitivity of

the technique to these parameters. Also, since crisis identifi-

cation is not 100% accurate, we need to establish an accept-

able level of uncertainty in production use based on both

technical and business reasons. In this section we address

each of these operational considerations.

6.1 Setting algorithm parameters
As described in Figure 4 and Section 3.5, we automatically

update fingerprinting parameters when a new crisis is de-

tected and after it is over. These updates are based on a set

of hyperparameters that may not require any changes, but

should be reviewed periodically or when a major change oc-

curs in the datacenter. These hyperparameters include the

number of metrics to be part of the fingerprint, number of

days W and percentage p of metric values considered ex-

treme when computing hot and cold thresholds, and α used

when computing identification threshold T .

The effects of the hyperparameters on the identification

accuracy and time to detection could be estimated offline by

running identification experiments using past labeled crises.

The operators would use ROC curves and graphs such as the

ones in Figure 6, to select a suitable operating point of dat-

acenter fingerprinting. Producing these graphs took on the

order of minutes for the 19 crises we used in our experi-

ments. After selecting the hyperparameters, the adaptation

of the fingerprinting parameters and the identification algo-

rithm proceed automatically with little intervention by the

operators. To illustrate the approach, we report on some of

the experiments we performed in order to set the hyperpa-

rameters and study their effect on the results.

In our reported results we use p = 4% as the percentage

of metric values considered extreme when computing the hot

and cold thresholds. When experimenting with values of 2%,

10% and 20% we observe that the area under the ROC curve

(as in Section 5.1) decreased from 0.99 to 0.96 – a small

change and still far better than the competing approaches.

Instead of using all three quantiles when summarizing

metrics, we also tried using just the median, which reduced

the identification accuracy by 2–3 points in the fully opera-

tional setting. In the oracle setting, the accuracy decreased

by 5 points which is still better than competing approaches

as reported in Sections 5.1 and 5.3 and illustrated in Fig-

ures 5 and 7. Our intuition is that some pairs of crises are

distinguished by three quantiles that don’t all move in the

same direction, and observing the movement of only a single

quantile would necessarily fail to capture such differences.

In the experiments in Section 5 we used M = 30 metrics

for the fingerprint; in additional experiments we observed a

decrease in the accuracy of the identification as we tried fin-

gerprints of 20, 10, and 5 metrics, with the moving window

size of W = 240 days. As we changed W to 120, 30, and 7,

we observed that reducing the number of metrics in the fin-

gerprint actually compensates. This is not surprising: as the

size of the fingerprint decreases, the fingerprint adjusts more

nimbly to rapid changes in values, which comes as a con-

sequence of reducing W . But as W increases and a greater

variety of crises is seen, additional information is needed in

the fingerprint to capture the differences among them.

Also, as mentioned in Section 3.4, we update T to avoid

false positives (α set to 0.1%). In Figure 6 we show the

effects of increasing the false positive rate (which in turn will

affect T ). As expected, the known accuracy will increase

while the unknown accuracy will decrease. Although in our

datacenter the increase is marginal and the false positive rate

will start affecting the result when it is larger than 2%.

Finally, when comparing two crises, we first compute

the crisis fingerprints by averaging the corresponding epoch

fingerprints. In all the experiments in Section 5, we average

across epochs −30 minutes, . . . , 60 minutes, relative to the

start of the crisis (the limit of 60 minutes was set by the

datacenter operators). Figure 8 shows that ranges that start

at least 30 minutes before the beginning of the crisis quickly

achieve high levels of discrimination.

6.2 Crisis Labeling, Bootstrapping and Uncertainty
As described in Section 3.4 the automatic adaptation of the

threshold T depends on the selection of the actual false posi-

tive rate, which in turn needs the accurate (forensic) labeling

of a significant set of crises. In addition, the highest accu-

racy results in the full operational setting (Section 5.2) were

obtained when the identification process was bootstrapped

with 5 labeled crises. We remark that the labeling does not

have to necessarily point to the root cause, but merely group

similar crises together, and it does not need to occur in real

time. Nevertheless, a natural question is what to do when

a new application is first deployed (or significantly modi-

fied) and no prior crisis data is available for bootstrapping, or

there is significant cost of the forensic analysis of the crises.

To this end we have recently proposed and evaluated an ap-

121



0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

end of fingerprint summary interval

ar
ea

 u
nd

er
 th

e 
R

O
C

 c
ur

ve

30 0 30 60 90 120 150

summaries starting at 60 minutes
summaries starting at 45 minutes
summaries starting at 30 minutes
summaries starting at 15 minutes
summaries starting at 0 minutes

Figure 8. Area under the ROC curve (discriminative power) of

fingerprints when summarized over different ranges. Each line on

the graph represents ranges that start at the same epoch, while the

x-axis represents the end of the range. The arrow points to AUC

corresponding to the range 〈−30minutes, +60minutes〉 used in all

our experiments.

proach based on the same fingerprinting representation but

a different identification and pattern matching process that

is based on performing online clustering of the crises. No-

tice that this is non-trivial as we need to first decide on the

number of clusters, plus decide whether a new crisis merits

a new cluster. The approach we are pursuing is based on first

modeling the crises as a time series of fingerprints (instead

of collapsing them into a crisis fingerprint as in Section 3.4)

and then imposing a Dirichlet process mixture (DPM) for

grouping the crises online and deciding whether a new clus-

ter is needed. DPMs are well known constructs that have

been used successfully in online document clustering [24];

due to space limitations we omit details on the mathemat-

ics of the model and the computational procedure, which are

described fully in [20].10 By virtue of being consistently de-

fined in terms of a probability distribution, the approach ob-

viates the need for a distance metric and a threshold for clus-

tering. In addition, in our initial experiments simulating the

same full operational environment, the approach achieves

accuracies compared to those reported in Section 5.2, with-

out the need for bootstrapping or forensic crises labeling.

Moreover, this approach reports a full posterior probability

on the clustering, enabling optimal decision making by pro-

viding a real uncertainty measure on the identification of the

crisis. A full probability on the clustering may also be use-

ful in cases where operators decide that two different crises

share the same (or very similar) fingerprints. This constitutes

clear evidence that additional metrics need to be collected to

distinguish between these two crises.

However, the computational process is more complicated

(in particular requiring a taxing offline component) and iden-

tification takes on average twice as long as the approach we

10 More details about the model can be found in Appendix B.

describe here (20 minutes vs. the 10 minutes we report in

Section 5.2). This observation suggests a possible hybrid ap-

proach: we can start the process with the more sophisticated

model based on DPMs [20], and once we have a sufficient

number of labeled crises, switch to our simpler matching ap-

proach (Section 3.4) to minimize time to identification. An-

other hybrid approach might use the simpler matching for

very fast identification, while using the DPM approach to

calculate an uncertainty on the identification. We are work-

ing on the details of these hybrid approaches as ongoing re-

search.

7. Conclusions
We described a methodology for constructing datacenter

“fingerprints” using statistical techniques. The goal of these

fingerprints is to provide the basis for automatic classifica-

tion and identification of performance crises in a datacenter.

Different from root-cause diagnosis, identification facilitates

rapid online repair of service disruptions, allowing poten-

tially time-consuming diagnosis to occur offline later. The

goal of rapid recovery is consistent with statements by lead-

ing Web application operators that today’s 24x7 Web and

cloud computing services require total downtime to be lim-

ited to 50–56 minutes per year11.

Under realistic conditions and using real data and very

stringent accuracy criteria, our approach provides operators

the information necessary to initiate recovery actions with

80% correctness in an average of 10 minutes, which is 50

minutes earlier than the deadline provided to us by the op-

erators. Indeed, our criteria may be more stringent that re-

quired in practice, since operators may just want to see a

list of candidate crises most similar to the current one. We

conjecture that our technique also directly applies to “vir-

tual clusters” in cloud computing environments. If the same

physical cloud is shared by many operators through a combi-

nation of physical and virtual isolation, the technique applies

to each operator’s “subcluster”, but we have no information

on whether it works across operators’ applications. We hope

that our results will inspire researchers to test and improve

on these techniques for multi-tenant environments.

Furthermore, the visualizations of the fingerprints them-

selves are readily interpretable by human operators: when

we showed a few of these fingerprints to the application

operators, they very quickly recognized most of the corre-

sponding crises, even though they are not experts in machine

learning. Interpretability and gaining operator trust are im-

portant for any machine learning technique that will be used

in an advisory mode in a production installation; we are now

working with the operators on such a live deployment.

11 Marvin Theimer, senior principal engineer, Amazon Web Services;

keynote at LADIS 2009 workshop.

122



A. Binary classification and ROC curves
A.1 Logistic regression with L1 regularization
In this appendix we briefly review the classifier used for

selecting the relevant metrics for the crises (as explained

in Section 3.3). In this context the “class variable” Yj is

a binary variable taking values from {0, 1} depending on

whether a machine was violating the SLO in epoch j and the

set of “features” Xj correspond to the set of metrics. The

objective of the classifier is to find an accurate model that

maps the metrics X to the class variable Y . In our approach,

that model is logistic regression, a common statistical para-

metric approach based on the assertion that the class variable

Y is a Bernoulli random variable with mean pj [22], where

1 ≤ j ≤ m is the jth sample.12 Given the set of features X ,

the model is given by

pj = P (Yj = 1|Xj = x) =
exp(

∑
i βixi)

1 + exp(
∑

i βixi)
(1)

The parameters βi are usually fitted by maximizing the like-

lihood function L(β) =
∏

j p
Yj

j (1 − pj)1−Yj . The L1 regu-

larization extends the objective function to include the con-

straint that the L1 norm of the parameters be less than a value

λ, that is,
∑

i |βi| ≤ λ, where λ can be fitted in a variety

of ways including cross-validation. Because the first partial

derivative of the L1 regularizer with respect to each β coef-

ficient is constant as the coefficient moves toward zero, the

values of the coefficients are “pushed” all the way to zero if

possible. For a more formal justifications we refer the reader

to [13]. This regularization was shown theoretically and ex-

perimentally to learn good models even when most features

are irrelevant and when the number of parameters is com-

parable to the number of samples [13]. It also typically pro-

duces sparse coefficient vectors in which many of the coef-

ficients are zero and can thus be used for feature selection.

This fits our objective of having an automated method for

finding the most relevant metrics for each crisis.

A.2 ROC curves
A binary classifier, such as Logistic regression, is a mapping

of data instances to a certain class, usually referred to as pos-
itive and negative. A correct classification of a positive in-

stance is called a true positive, while an incorrect classifica-

tion of a negative instance as a positive is called a false pos-
itive. The accuracy of a binary classifier is usually described

using its false positive rate and recall. False positive rate is a

fraction of all negative instances that were incorrectly classi-

fied as positive. Recall is the fraction of all positive instances

correctly classified as positive. The optimal classifier would

thus have false positive rate of 0 (no false positives) and re-

call of 1 (all positive instances classified correctly).

The mapping, and thus the accuracy, of most classifiers

are determined by a value of a classification threshold. For

12 We are assuming two classes; the extensions to more than one class have

been studied in the literature.

example, increasing the classification threshold might in-

crease recall but also the false positive rate. The Receiver

Operating Characteristic (ROC) curve is used to capture the

accuracy of a classifier for all possible values of the clas-

sification threshold (see Figure 5). Each point on the curve

represents the false positive rate and recall for a certain value

of the classification threshold; in Figure 5 it is the threshold

T on the distance between two fingerprints. An ROC curve

of an optimal classifier passes through point (0, 1) represent-

ing false positive rate of 0 and recall of 1. In general, larger

area under the ROC curve implies a more accurate classifier.

B. Synthetic Experiments and the Dirichlet
Process Mixture

One of the properties of the model described in Section 6.2

is that it is a “generative” model. This means that, using stan-

dard probabilistic methods, we can sample from this model

and create synthetic data, that we can use to study the differ-

ent properties of the DPM modeling of the crises. In one

such experiment, we increased the total number of crises

from 15 to 35 and verified that identification accuracy in-

creases monotonically. We also compared the accuracy of

our models to standard clustering approaches such as vari-

ants of K-means and showed the superiority of our approach.

These and other experiments are described in detail in [20].

The model consists of two parts. We first use a Markov

chain to model the evolution of a crisis and then we group the

Markov chains using the Dirichlet process. The state in the

Markov chain model is defined by a fingerprint; it is a vector

of the relevant metric quantiles where each element of the

vector can take 3 possible values depending on whether the

quantile is hot, cold, or normal. The first state of the chain

is therefore defined by a discrete distribution over these val-

ues. We fit this distribution from the crises data. This ini-

tial state then evolves according to a Markov chain of order

one with a transition matrix where each entry in the matrix

denotes a conditional probability of the metric quantile tak-

ing value v′ given that it had value v in the previous state.

The parameters of these distributions are again fitted from

the crises data. Each crisis i has a label Zi associated with

it. We want to compute π({Zi}I
i=1|D), namely, the proba-

bility of each possible grouping of the labels given all the

data observed in terms of the states of the metrics during

the crises, which automatically yields an identification of the

crises and its uncertainty. It is beyond the scope of this paper

to give a full rigorous account of the Dirichlet process and

the computation of this distribution. Here we just provide

some intuition; the interested reader can consult [20]. Using

Bayes rule we know that π({Zi}I
i=1|D) is proportional to

the product π(D|{Zi}I
i=1) ∗ π({Zi}I

i=1). The first term can

be computed in closed form from the Markov chain models.

The second term is computed from the Dirichlet process by

decomposing the joint into a product of conditionals of the

form π(Zi = z|{Zi′}i′<i). Where each one of these, is in

123



turn proportional to a parameter α if z denotes a new label,

or to the number of times that label z occurs in the past. The

efficient computation of π({Zi}I
i=1|D) uses some approxi-

mations and very efficient Monte Carlo techniques.

Acknowledgements
We thank Doug Terry, Martin Abadi, Ras Bodı́k, Alice

Zheng, Eno Thereska, Joe Hellerstein, Russell Sears, and

Peter Alvaro for insightful comments on a previous draft.

We also thank the anonymous reviewers and our shepherd

Pascal Felber for their suggestions which improved the pre-

sentation and content of the paper.

References
[1] HP OpenView, welcome.hp.com/country/us/en/ prod-

serv/software.html.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using

magpie for request extraction and workload modelling. In

OSDI’04: Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation, pages 18–

18, Berkeley, CA, USA, 2004. USENIX Association.

[3] P. Bodı́k, A. Fox, M. I. Jordan, D. Patterson, A. Banerjee,

R. Jagannathan, T. Su, S. Tenginakai, B. Turner, and J. Ingalls.

Advanced tools for operators at Amazon.com. In Hot Topics
in Autonomic Computing (HotAC), 2006.

[4] P. Bodı́k, M. Goldszmidt, and A. Fox. Hilighter: Automat-

ically building robust signatures of performance behavior for

small- and large-scale systems. In A. Fox and S. Basu, editors,

SysML. USENIX Association, 2008.

[5] M. Y. Chen, E. Kıcıman, A. Accardi, E. A. Brewer, D. Pat-

terson, and A. Fox. Path-based failure and evolution manage-

ment. In Proc. 1st USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI’04), San Fran-

cisco, CA, March 2004.

[6] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.

Correlating instrumentation data to system states: A build-

ing block for automated diagnosis and control. In Proc. 6th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 2004), San Francisco, CA, Dec 2004.

[7] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and

A. Fox. Capturing, indexing, clustering, and retrieving system

history. In A. Herbert and K. P. Birman, editors, SOSP, pages

105–118. ACM, 2005.

[8] B. Cook, S. Babu, G. Candea, and S. Duan. Toward Self-

Healing Multitier Services. 2007.

[9] S. Duan and S. Babu. Guided problem diagnosis through

active learning. In ICAC 2008, pages 45–54, Washington, DC,

USA, 2008. IEEE Computer Society.

[10] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgo-

van, G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging

in the (very) large: Ten years of implementation and experi-

ence. In 22nd ACM Symposium on Operating Systems Princi-
ples (SOSP 2009), Big Sky, Montana, Oct 2009.

[11] M. Goldszmidt, I. Cohen, S. Zhang, and A. Fox. Three

research challenges at the intersection of machine learning,

statistical inference, and systems. In Proc. Tenth Workshop on
Hot Topics in Operating Systems (HotOS-X), Santa Fe, NM,

June 2005.

[12] S. Guha and A. McGregor. Stream order and order statistics:

Quantile estimation in random-order streams. SIAM Journal
on Computing, 38(5):2044–2059, 2009.

[13] K. Koh, S.-J. Kim, and S. Boyd. An interior-point method

for large-scale L1-regularized logistic regression. Journal of
Machine Learning Research, 8:1519–1555, 2007.

[14] N. Lachiche and P. Flach. Improving accuracy and cost of

two-class and multi-class probabilistic classifiers using ROC

curves. In 20th International Conference on Machine Learn-
ing (ICML03), 2003.

[15] M. Massie. The ganglia distributed monitoring system: de-

sign, implementation, and experience. Parallel Computing,

30(7):817–840, July 2004.

[16] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,

J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,

D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupamn, and

N. Treuhaft. Recovery oriented computing (ROC): Motiva-

tion, definition, techniques, and case studies. Technical report,

UC Berkeley, March 2002.

[17] S. Pertet, R. Gandhi, and P. Narasimhan. Fingerpointing cor-

related failures in replicated systems. In SYSML’07: Proceed-
ings of the 2nd USENIX workshop on Tackling computer sys-
tems problems with machine learning techniques, pages 1–6,

Berkeley, CA, USA, 2007. USENIX Association.

[18] J. A. Redstone, M. M. Swift, , and B. N. Bershad. Using

computers to diagnose computer problems. In 9th Workshop
on Hot Topics in Operating Systems (HotOS-IX), Elmau, Ger-

many, 2003.

[19] P. Reynolds, J. L. Wiener, J. C. Mogul, M. A. Shah, C. Killian,

and A. Vahdat. Experiences with Pip: finding unexpected be-

havior in distributed systems. In SOSP ’05: Proceedings of
the twentieth ACM symposium on Operating systems princi-
ples, pages 1–2, New York, NY, USA, 2005. ACM.

[20] D. Woodard and M. Goldszmidt. Model-based clustering for

online crisis identification in distributed computing. Technical

report, Microsoft Research, 2009.

[21] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie.

High speed and robust event correlation. Communications
Magazine, IEEE, 34(5):82–90, 1996.

[22] M. Young and P. T. Hastie. L1 regularization path algorithm

for generalized linear models, 2006.

[23] C. Yuan, N. L. J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and

W.-Y. Ma. Automated known problem diagnosis with event

traces. In EuroSys 2006, Leuven, Belgium, April 2006.

[24] J. Zhang, Z. Ghahramani, and Y. Yang. A probabilistic model

for online document clustering with application to novelty

detection. In L. K. Saul, Y. Weiss, and L. Bottou, editors,

Advances in Neural Information Processing Systems 17, pages

1617–1624. MIT Press, Cambridge, MA, 2005.

[25] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.

Ensembles of models for automated diagnosis of system per-

formance problems. In 2005 Intl. Conf. on Dependable Sys-
tems and Networks (DSN 2005), Yokohama, Japan, June 2005.

124



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


